BayesFlow Stochastic Tensors (contrib)
[TOC]
Classes and helper functions for creating Stochastic Tensors.
StochasticTensor objects wrap Distribution objects. Their
values may be samples from the underlying distribution, or the distribution
mean (as governed by value_type). These objects provide a loss
method for use when sampling from a non-reparameterized distribution.
The lossmethod is used in conjunction with stochastic_graph.surrogate_loss
to produce a single differentiable loss in stochastic graphs having
both continuous and discrete stochastic nodes.
Stochastic Tensor Classes
class tf.contrib.bayesflow.stochastic_tensor.BaseStochasticTensor
Base Class for Tensor-like objects that emit stochastic values.
tf.contrib.bayesflow.stochastic_tensor.BaseStochasticTensor.__init__()
tf.contrib.bayesflow.stochastic_tensor.BaseStochasticTensor.dtype
tf.contrib.bayesflow.stochastic_tensor.BaseStochasticTensor.graph
tf.contrib.bayesflow.stochastic_tensor.BaseStochasticTensor.input_dict
tf.contrib.bayesflow.stochastic_tensor.BaseStochasticTensor.loss(sample_loss)
Returns the term to add to the surrogate loss.
This method is called by surrogate_loss. The input sample_loss should
have already had stop_gradient applied to it. This is because the
surrogate_loss usually provides a Monte Carlo sample term of the form
differentiable_surrogate * sample_loss where sample_loss is considered
constant with respect to the input for purposes of the gradient.
Args:
sample_loss:Tensor, sample loss downstream of thisStochasticTensor.
Returns:
Either None or a Tensor.
tf.contrib.bayesflow.stochastic_tensor.BaseStochasticTensor.name
tf.contrib.bayesflow.stochastic_tensor.BaseStochasticTensor.value(name=None)
class tf.contrib.bayesflow.stochastic_tensor.StochasticTensor
StochasticTensor is a BaseStochasticTensor backed by a distribution.
tf.contrib.bayesflow.stochastic_tensor.StochasticTensor.__init__(dist_cls, name=None, dist_value_type=None, loss_fn=score_function, **dist_args)
Construct a StochasticTensor.
StochasticTensor will instantiate a distribution from dist_cls and
dist_args and its value method will return the same value each time
it is called. What value is returned is controlled by the
dist_value_type (defaults to SampleAndReshapeValue).
Some distributions' sample functions are not differentiable (e.g. a sample
from a discrete distribution like a Bernoulli) and so to differentiate
wrt parameters upstream of the sample requires a gradient estimator like
the score function estimator. This is accomplished by passing a
differentiable loss_fn to the StochasticTensor, which
defaults to a function whose derivative is the score function estimator.
Calling stochastic_graph.surrogate_loss(final_losses) will call
loss() on every StochasticTensor upstream of final losses.
loss() will return None for StochasticTensors backed by
reparameterized distributions; it will also return None if the value type is
MeanValueType or if loss_fn=None.
Args:
dist_cls: aDistributionclass.name: a name for thisStochasticTensorand its ops.dist_value_type: a_StochasticValueType, which will determine what thevalueof thisStochasticTensorwill be. If not provided, the value type set with thevalue_typecontext manager will be used.loss_fn: callable that takes(dt, dt.value(), influenced_loss), wheredtis thisStochasticTensor, and returns aTensorloss. By default,loss_fnis thescore_function, or more precisely, the integral of the score function, such that when the gradient is taken, the score function results. See thestochastic_gradient_estimatorsmodule for additional loss functions and baselines.**dist_args: keyword arguments to be passed through todist_clson construction.
Raises:
TypeError: ifdist_clsis not aDistribution.TypeError: ifloss_fnis notcallable.
tf.contrib.bayesflow.stochastic_tensor.StochasticTensor.clone(name=None, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.StochasticTensor.distribution
tf.contrib.bayesflow.stochastic_tensor.StochasticTensor.dtype
tf.contrib.bayesflow.stochastic_tensor.StochasticTensor.entropy(name='entropy')
tf.contrib.bayesflow.stochastic_tensor.StochasticTensor.graph
tf.contrib.bayesflow.stochastic_tensor.StochasticTensor.input_dict
tf.contrib.bayesflow.stochastic_tensor.StochasticTensor.loss(final_loss, name='Loss')
tf.contrib.bayesflow.stochastic_tensor.StochasticTensor.mean(name='mean')
tf.contrib.bayesflow.stochastic_tensor.StochasticTensor.name
tf.contrib.bayesflow.stochastic_tensor.StochasticTensor.value(name='value')
tf.contrib.bayesflow.stochastic_tensor.StochasticTensor.value_type
Stochastic Tensor Value Types
class tf.contrib.bayesflow.stochastic_tensor.MeanValue
tf.contrib.bayesflow.stochastic_tensor.MeanValue.__init__(stop_gradient=False)
tf.contrib.bayesflow.stochastic_tensor.MeanValue.declare_inputs(unused_stochastic_tensor, unused_inputs_dict)
tf.contrib.bayesflow.stochastic_tensor.MeanValue.popped_above(unused_value_type)
tf.contrib.bayesflow.stochastic_tensor.MeanValue.pushed_above(unused_value_type)
tf.contrib.bayesflow.stochastic_tensor.MeanValue.stop_gradient
class tf.contrib.bayesflow.stochastic_tensor.SampleValue
Draw n samples along a new outer dimension.
This ValueType draws n samples from StochasticTensors run within its
context, increasing the rank by one along a new outer dimension.
Example:
mu = tf.zeros((2,3))
sigma = tf.ones((2, 3))
with sg.value_type(sg.SampleValue(n=4)):
dt = sg.DistributionTensor(
distributions.Normal, mu=mu, sigma=sigma)
# draws 4 samples each with shape (2, 3) and concatenates
assertEqual(dt.value().get_shape(), (4, 2, 3))
tf.contrib.bayesflow.stochastic_tensor.SampleValue.__init__(n=1, stop_gradient=False)
Sample n times and concatenate along a new outer dimension.
Args:
n: A python integer or int32 tensor. The number of samples to take.stop_gradient: IfTrue, StochasticTensors' values are wrapped instop_gradient, to avoid backpropagation through.
tf.contrib.bayesflow.stochastic_tensor.SampleValue.declare_inputs(unused_stochastic_tensor, unused_inputs_dict)
tf.contrib.bayesflow.stochastic_tensor.SampleValue.n
tf.contrib.bayesflow.stochastic_tensor.SampleValue.popped_above(unused_value_type)
tf.contrib.bayesflow.stochastic_tensor.SampleValue.pushed_above(unused_value_type)
tf.contrib.bayesflow.stochastic_tensor.SampleValue.stop_gradient
class tf.contrib.bayesflow.stochastic_tensor.SampleAndReshapeValue
Ask the StochasticTensor for n samples and reshape the result.
Sampling from a StochasticTensor increases the rank of the value by 1 (because each sample represents a new outer dimension).
This ValueType requests n samples from StochasticTensors run within its
context that the outer two dimensions are reshaped to intermix the samples
with the outermost (usually batch) dimension.
Example:
# mu and sigma are both shaped (2, 3)
mu = [[0.0, -1.0, 1.0], [0.0, -1.0, 1.0]]
sigma = tf.constant([[1.1, 1.2, 1.3], [1.1, 1.2, 1.3]])
with sg.value_type(sg.SampleAndReshapeValue(n=2)):
dt = sg.DistributionTensor(
distributions.Normal, mu=mu, sigma=sigma)
# sample(2) creates a (2, 2, 3) tensor, and the two outermost dimensions
# are reshaped into one: the final value is a (4, 3) tensor.
dt_value = dt.value()
assertEqual(dt_value.get_shape(), (4, 3))
dt_value_val = sess.run([dt_value])[0] # or e.g. run([tf.identity(dt)])[0]
assertEqual(dt_value_val.shape, (4, 3))
tf.contrib.bayesflow.stochastic_tensor.SampleAndReshapeValue.__init__(n=1, stop_gradient=False)
Sample n times and reshape the outer 2 axes so rank does not change.
Args:
n: A python integer or int32 tensor. The number of samples to take.stop_gradient: IfTrue, StochasticTensors' values are wrapped instop_gradient, to avoid backpropagation through.
tf.contrib.bayesflow.stochastic_tensor.SampleAndReshapeValue.declare_inputs(unused_stochastic_tensor, unused_inputs_dict)
tf.contrib.bayesflow.stochastic_tensor.SampleAndReshapeValue.n
tf.contrib.bayesflow.stochastic_tensor.SampleAndReshapeValue.popped_above(unused_value_type)
tf.contrib.bayesflow.stochastic_tensor.SampleAndReshapeValue.pushed_above(unused_value_type)
tf.contrib.bayesflow.stochastic_tensor.SampleAndReshapeValue.stop_gradient
tf.contrib.bayesflow.stochastic_tensor.value_type(dist_value_type)
Creates a value type context for any StochasticTensor created within.
Typical usage:
with sg.value_type(sg.MeanValue(stop_gradients=True)):
dt = sg.DistributionTensor(distributions.Normal, mu=mu, sigma=sigma)
In the example above, dt.value() (or equivalently, tf.identity(dt)) will
be the mean value of the Normal distribution, i.e., mu (possibly
broadcasted to the shape of sigma). Furthermore, because the MeanValue
was marked with stop_gradients=True, this value will have been wrapped
in a stop_gradients call to disable any possible backpropagation.
Args:
dist_value_type: An instance ofMeanValue,SampleAndReshapeValue, or any other stochastic value type.
Yields:
A context for StochasticTensor objects that controls the
value created when they are initialized.
Raises:
TypeError: ifdist_value_typeis not an instance of a stochastic value type.
tf.contrib.bayesflow.stochastic_tensor.get_current_value_type()
Automatically Generated StochasticTensors
class tf.contrib.bayesflow.stochastic_tensor.BernoulliTensor
BernoulliTensor is a StochasticTensor backed by the distribution Bernoulli.
tf.contrib.bayesflow.stochastic_tensor.BernoulliTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.BernoulliTensor.clone(name=None, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.BernoulliTensor.distribution
tf.contrib.bayesflow.stochastic_tensor.BernoulliTensor.dtype
tf.contrib.bayesflow.stochastic_tensor.BernoulliTensor.entropy(name='entropy')
tf.contrib.bayesflow.stochastic_tensor.BernoulliTensor.graph
tf.contrib.bayesflow.stochastic_tensor.BernoulliTensor.input_dict
tf.contrib.bayesflow.stochastic_tensor.BernoulliTensor.loss(final_loss, name='Loss')
tf.contrib.bayesflow.stochastic_tensor.BernoulliTensor.mean(name='mean')
tf.contrib.bayesflow.stochastic_tensor.BernoulliTensor.name
tf.contrib.bayesflow.stochastic_tensor.BernoulliTensor.value(name='value')
tf.contrib.bayesflow.stochastic_tensor.BernoulliTensor.value_type
class tf.contrib.bayesflow.stochastic_tensor.BernoulliWithSigmoidPTensor
BernoulliWithSigmoidPTensor is a StochasticTensor backed by the distribution BernoulliWithSigmoidP.
tf.contrib.bayesflow.stochastic_tensor.BernoulliWithSigmoidPTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.BernoulliWithSigmoidPTensor.clone(name=None, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.BernoulliWithSigmoidPTensor.distribution
tf.contrib.bayesflow.stochastic_tensor.BernoulliWithSigmoidPTensor.dtype
tf.contrib.bayesflow.stochastic_tensor.BernoulliWithSigmoidPTensor.entropy(name='entropy')
tf.contrib.bayesflow.stochastic_tensor.BernoulliWithSigmoidPTensor.graph
tf.contrib.bayesflow.stochastic_tensor.BernoulliWithSigmoidPTensor.input_dict
tf.contrib.bayesflow.stochastic_tensor.BernoulliWithSigmoidPTensor.loss(final_loss, name='Loss')
tf.contrib.bayesflow.stochastic_tensor.BernoulliWithSigmoidPTensor.mean(name='mean')
tf.contrib.bayesflow.stochastic_tensor.BernoulliWithSigmoidPTensor.name
tf.contrib.bayesflow.stochastic_tensor.BernoulliWithSigmoidPTensor.value(name='value')
tf.contrib.bayesflow.stochastic_tensor.BernoulliWithSigmoidPTensor.value_type
class tf.contrib.bayesflow.stochastic_tensor.BetaTensor
BetaTensor is a StochasticTensor backed by the distribution Beta.
tf.contrib.bayesflow.stochastic_tensor.BetaTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.BetaTensor.clone(name=None, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.BetaTensor.distribution
tf.contrib.bayesflow.stochastic_tensor.BetaTensor.dtype
tf.contrib.bayesflow.stochastic_tensor.BetaTensor.entropy(name='entropy')
tf.contrib.bayesflow.stochastic_tensor.BetaTensor.graph
tf.contrib.bayesflow.stochastic_tensor.BetaTensor.input_dict
tf.contrib.bayesflow.stochastic_tensor.BetaTensor.loss(final_loss, name='Loss')
tf.contrib.bayesflow.stochastic_tensor.BetaTensor.mean(name='mean')
tf.contrib.bayesflow.stochastic_tensor.BetaTensor.name
tf.contrib.bayesflow.stochastic_tensor.BetaTensor.value(name='value')
tf.contrib.bayesflow.stochastic_tensor.BetaTensor.value_type
class tf.contrib.bayesflow.stochastic_tensor.BetaWithSoftplusABTensor
BetaWithSoftplusABTensor is a StochasticTensor backed by the distribution BetaWithSoftplusAB.
tf.contrib.bayesflow.stochastic_tensor.BetaWithSoftplusABTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.BetaWithSoftplusABTensor.clone(name=None, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.BetaWithSoftplusABTensor.distribution
tf.contrib.bayesflow.stochastic_tensor.BetaWithSoftplusABTensor.dtype
tf.contrib.bayesflow.stochastic_tensor.BetaWithSoftplusABTensor.entropy(name='entropy')
tf.contrib.bayesflow.stochastic_tensor.BetaWithSoftplusABTensor.graph
tf.contrib.bayesflow.stochastic_tensor.BetaWithSoftplusABTensor.input_dict
tf.contrib.bayesflow.stochastic_tensor.BetaWithSoftplusABTensor.loss(final_loss, name='Loss')
tf.contrib.bayesflow.stochastic_tensor.BetaWithSoftplusABTensor.mean(name='mean')
tf.contrib.bayesflow.stochastic_tensor.BetaWithSoftplusABTensor.name
tf.contrib.bayesflow.stochastic_tensor.BetaWithSoftplusABTensor.value(name='value')
tf.contrib.bayesflow.stochastic_tensor.BetaWithSoftplusABTensor.value_type
class tf.contrib.bayesflow.stochastic_tensor.BinomialTensor
BinomialTensor is a StochasticTensor backed by the distribution Binomial.
tf.contrib.bayesflow.stochastic_tensor.BinomialTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.BinomialTensor.clone(name=None, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.BinomialTensor.distribution
tf.contrib.bayesflow.stochastic_tensor.BinomialTensor.dtype
tf.contrib.bayesflow.stochastic_tensor.BinomialTensor.entropy(name='entropy')
tf.contrib.bayesflow.stochastic_tensor.BinomialTensor.graph
tf.contrib.bayesflow.stochastic_tensor.BinomialTensor.input_dict
tf.contrib.bayesflow.stochastic_tensor.BinomialTensor.loss(final_loss, name='Loss')
tf.contrib.bayesflow.stochastic_tensor.BinomialTensor.mean(name='mean')
tf.contrib.bayesflow.stochastic_tensor.BinomialTensor.name
tf.contrib.bayesflow.stochastic_tensor.BinomialTensor.value(name='value')
tf.contrib.bayesflow.stochastic_tensor.BinomialTensor.value_type
class tf.contrib.bayesflow.stochastic_tensor.CategoricalTensor
CategoricalTensor is a StochasticTensor backed by the distribution Categorical.
tf.contrib.bayesflow.stochastic_tensor.CategoricalTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.CategoricalTensor.clone(name=None, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.CategoricalTensor.distribution
tf.contrib.bayesflow.stochastic_tensor.CategoricalTensor.dtype
tf.contrib.bayesflow.stochastic_tensor.CategoricalTensor.entropy(name='entropy')
tf.contrib.bayesflow.stochastic_tensor.CategoricalTensor.graph
tf.contrib.bayesflow.stochastic_tensor.CategoricalTensor.input_dict
tf.contrib.bayesflow.stochastic_tensor.CategoricalTensor.loss(final_loss, name='Loss')
tf.contrib.bayesflow.stochastic_tensor.CategoricalTensor.mean(name='mean')
tf.contrib.bayesflow.stochastic_tensor.CategoricalTensor.name
tf.contrib.bayesflow.stochastic_tensor.CategoricalTensor.value(name='value')
tf.contrib.bayesflow.stochastic_tensor.CategoricalTensor.value_type
class tf.contrib.bayesflow.stochastic_tensor.Chi2Tensor
Chi2Tensor is a StochasticTensor backed by the distribution Chi2.
tf.contrib.bayesflow.stochastic_tensor.Chi2Tensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.Chi2Tensor.clone(name=None, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.Chi2Tensor.distribution
tf.contrib.bayesflow.stochastic_tensor.Chi2Tensor.dtype
tf.contrib.bayesflow.stochastic_tensor.Chi2Tensor.entropy(name='entropy')
tf.contrib.bayesflow.stochastic_tensor.Chi2Tensor.graph
tf.contrib.bayesflow.stochastic_tensor.Chi2Tensor.input_dict
tf.contrib.bayesflow.stochastic_tensor.Chi2Tensor.loss(final_loss, name='Loss')
tf.contrib.bayesflow.stochastic_tensor.Chi2Tensor.mean(name='mean')
tf.contrib.bayesflow.stochastic_tensor.Chi2Tensor.name
tf.contrib.bayesflow.stochastic_tensor.Chi2Tensor.value(name='value')
tf.contrib.bayesflow.stochastic_tensor.Chi2Tensor.value_type
class tf.contrib.bayesflow.stochastic_tensor.Chi2WithAbsDfTensor
Chi2WithAbsDfTensor is a StochasticTensor backed by the distribution Chi2WithAbsDf.
tf.contrib.bayesflow.stochastic_tensor.Chi2WithAbsDfTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.Chi2WithAbsDfTensor.clone(name=None, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.Chi2WithAbsDfTensor.distribution
tf.contrib.bayesflow.stochastic_tensor.Chi2WithAbsDfTensor.dtype
tf.contrib.bayesflow.stochastic_tensor.Chi2WithAbsDfTensor.entropy(name='entropy')
tf.contrib.bayesflow.stochastic_tensor.Chi2WithAbsDfTensor.graph
tf.contrib.bayesflow.stochastic_tensor.Chi2WithAbsDfTensor.input_dict
tf.contrib.bayesflow.stochastic_tensor.Chi2WithAbsDfTensor.loss(final_loss, name='Loss')
tf.contrib.bayesflow.stochastic_tensor.Chi2WithAbsDfTensor.mean(name='mean')
tf.contrib.bayesflow.stochastic_tensor.Chi2WithAbsDfTensor.name
tf.contrib.bayesflow.stochastic_tensor.Chi2WithAbsDfTensor.value(name='value')
tf.contrib.bayesflow.stochastic_tensor.Chi2WithAbsDfTensor.value_type
class tf.contrib.bayesflow.stochastic_tensor.DirichletTensor
DirichletTensor is a StochasticTensor backed by the distribution Dirichlet.
tf.contrib.bayesflow.stochastic_tensor.DirichletTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.DirichletTensor.clone(name=None, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.DirichletTensor.distribution
tf.contrib.bayesflow.stochastic_tensor.DirichletTensor.dtype
tf.contrib.bayesflow.stochastic_tensor.DirichletTensor.entropy(name='entropy')
tf.contrib.bayesflow.stochastic_tensor.DirichletTensor.graph
tf.contrib.bayesflow.stochastic_tensor.DirichletTensor.input_dict
tf.contrib.bayesflow.stochastic_tensor.DirichletTensor.loss(final_loss, name='Loss')
tf.contrib.bayesflow.stochastic_tensor.DirichletTensor.mean(name='mean')
tf.contrib.bayesflow.stochastic_tensor.DirichletTensor.name
tf.contrib.bayesflow.stochastic_tensor.DirichletTensor.value(name='value')
tf.contrib.bayesflow.stochastic_tensor.DirichletTensor.value_type
class tf.contrib.bayesflow.stochastic_tensor.DirichletMultinomialTensor
DirichletMultinomialTensor is a StochasticTensor backed by the distribution DirichletMultinomial.
tf.contrib.bayesflow.stochastic_tensor.DirichletMultinomialTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.DirichletMultinomialTensor.clone(name=None, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.DirichletMultinomialTensor.distribution
tf.contrib.bayesflow.stochastic_tensor.DirichletMultinomialTensor.dtype
tf.contrib.bayesflow.stochastic_tensor.DirichletMultinomialTensor.entropy(name='entropy')
tf.contrib.bayesflow.stochastic_tensor.DirichletMultinomialTensor.graph
tf.contrib.bayesflow.stochastic_tensor.DirichletMultinomialTensor.input_dict
tf.contrib.bayesflow.stochastic_tensor.DirichletMultinomialTensor.loss(final_loss, name='Loss')
tf.contrib.bayesflow.stochastic_tensor.DirichletMultinomialTensor.mean(name='mean')
tf.contrib.bayesflow.stochastic_tensor.DirichletMultinomialTensor.name
tf.contrib.bayesflow.stochastic_tensor.DirichletMultinomialTensor.value(name='value')
tf.contrib.bayesflow.stochastic_tensor.DirichletMultinomialTensor.value_type
class tf.contrib.bayesflow.stochastic_tensor.ExponentialTensor
ExponentialTensor is a StochasticTensor backed by the distribution Exponential.
tf.contrib.bayesflow.stochastic_tensor.ExponentialTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.ExponentialTensor.clone(name=None, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.ExponentialTensor.distribution
tf.contrib.bayesflow.stochastic_tensor.ExponentialTensor.dtype
tf.contrib.bayesflow.stochastic_tensor.ExponentialTensor.entropy(name='entropy')
tf.contrib.bayesflow.stochastic_tensor.ExponentialTensor.graph
tf.contrib.bayesflow.stochastic_tensor.ExponentialTensor.input_dict
tf.contrib.bayesflow.stochastic_tensor.ExponentialTensor.loss(final_loss, name='Loss')
tf.contrib.bayesflow.stochastic_tensor.ExponentialTensor.mean(name='mean')
tf.contrib.bayesflow.stochastic_tensor.ExponentialTensor.name
tf.contrib.bayesflow.stochastic_tensor.ExponentialTensor.value(name='value')
tf.contrib.bayesflow.stochastic_tensor.ExponentialTensor.value_type
class tf.contrib.bayesflow.stochastic_tensor.ExponentialWithSoftplusLamTensor
ExponentialWithSoftplusLamTensor is a StochasticTensor backed by the distribution ExponentialWithSoftplusLam.
tf.contrib.bayesflow.stochastic_tensor.ExponentialWithSoftplusLamTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.ExponentialWithSoftplusLamTensor.clone(name=None, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.ExponentialWithSoftplusLamTensor.distribution
tf.contrib.bayesflow.stochastic_tensor.ExponentialWithSoftplusLamTensor.dtype
tf.contrib.bayesflow.stochastic_tensor.ExponentialWithSoftplusLamTensor.entropy(name='entropy')
tf.contrib.bayesflow.stochastic_tensor.ExponentialWithSoftplusLamTensor.graph
tf.contrib.bayesflow.stochastic_tensor.ExponentialWithSoftplusLamTensor.input_dict
tf.contrib.bayesflow.stochastic_tensor.ExponentialWithSoftplusLamTensor.loss(final_loss, name='Loss')
tf.contrib.bayesflow.stochastic_tensor.ExponentialWithSoftplusLamTensor.mean(name='mean')
tf.contrib.bayesflow.stochastic_tensor.ExponentialWithSoftplusLamTensor.name
tf.contrib.bayesflow.stochastic_tensor.ExponentialWithSoftplusLamTensor.value(name='value')
tf.contrib.bayesflow.stochastic_tensor.ExponentialWithSoftplusLamTensor.value_type
class tf.contrib.bayesflow.stochastic_tensor.GammaTensor
GammaTensor is a StochasticTensor backed by the distribution Gamma.
tf.contrib.bayesflow.stochastic_tensor.GammaTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.GammaTensor.clone(name=None, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.GammaTensor.distribution
tf.contrib.bayesflow.stochastic_tensor.GammaTensor.dtype
tf.contrib.bayesflow.stochastic_tensor.GammaTensor.entropy(name='entropy')
tf.contrib.bayesflow.stochastic_tensor.GammaTensor.graph
tf.contrib.bayesflow.stochastic_tensor.GammaTensor.input_dict
tf.contrib.bayesflow.stochastic_tensor.GammaTensor.loss(final_loss, name='Loss')
tf.contrib.bayesflow.stochastic_tensor.GammaTensor.mean(name='mean')
tf.contrib.bayesflow.stochastic_tensor.GammaTensor.name
tf.contrib.bayesflow.stochastic_tensor.GammaTensor.value(name='value')
tf.contrib.bayesflow.stochastic_tensor.GammaTensor.value_type
class tf.contrib.bayesflow.stochastic_tensor.GammaWithSoftplusAlphaBetaTensor
GammaWithSoftplusAlphaBetaTensor is a StochasticTensor backed by the distribution GammaWithSoftplusAlphaBeta.
tf.contrib.bayesflow.stochastic_tensor.GammaWithSoftplusAlphaBetaTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.GammaWithSoftplusAlphaBetaTensor.clone(name=None, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.GammaWithSoftplusAlphaBetaTensor.distribution
tf.contrib.bayesflow.stochastic_tensor.GammaWithSoftplusAlphaBetaTensor.dtype
tf.contrib.bayesflow.stochastic_tensor.GammaWithSoftplusAlphaBetaTensor.entropy(name='entropy')
tf.contrib.bayesflow.stochastic_tensor.GammaWithSoftplusAlphaBetaTensor.graph
tf.contrib.bayesflow.stochastic_tensor.GammaWithSoftplusAlphaBetaTensor.input_dict
tf.contrib.bayesflow.stochastic_tensor.GammaWithSoftplusAlphaBetaTensor.loss(final_loss, name='Loss')
tf.contrib.bayesflow.stochastic_tensor.GammaWithSoftplusAlphaBetaTensor.mean(name='mean')
tf.contrib.bayesflow.stochastic_tensor.GammaWithSoftplusAlphaBetaTensor.name
tf.contrib.bayesflow.stochastic_tensor.GammaWithSoftplusAlphaBetaTensor.value(name='value')
tf.contrib.bayesflow.stochastic_tensor.GammaWithSoftplusAlphaBetaTensor.value_type
class tf.contrib.bayesflow.stochastic_tensor.InverseGammaTensor
InverseGammaTensor is a StochasticTensor backed by the distribution InverseGamma.
tf.contrib.bayesflow.stochastic_tensor.InverseGammaTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.InverseGammaTensor.clone(name=None, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.InverseGammaTensor.distribution
tf.contrib.bayesflow.stochastic_tensor.InverseGammaTensor.dtype
tf.contrib.bayesflow.stochastic_tensor.InverseGammaTensor.entropy(name='entropy')
tf.contrib.bayesflow.stochastic_tensor.InverseGammaTensor.graph
tf.contrib.bayesflow.stochastic_tensor.InverseGammaTensor.input_dict
tf.contrib.bayesflow.stochastic_tensor.InverseGammaTensor.loss(final_loss, name='Loss')
tf.contrib.bayesflow.stochastic_tensor.InverseGammaTensor.mean(name='mean')
tf.contrib.bayesflow.stochastic_tensor.InverseGammaTensor.name
tf.contrib.bayesflow.stochastic_tensor.InverseGammaTensor.value(name='value')
tf.contrib.bayesflow.stochastic_tensor.InverseGammaTensor.value_type
class tf.contrib.bayesflow.stochastic_tensor.InverseGammaWithSoftplusAlphaBetaTensor
InverseGammaWithSoftplusAlphaBetaTensor is a StochasticTensor backed by the distribution InverseGammaWithSoftplusAlphaBeta.
tf.contrib.bayesflow.stochastic_tensor.InverseGammaWithSoftplusAlphaBetaTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.InverseGammaWithSoftplusAlphaBetaTensor.clone(name=None, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.InverseGammaWithSoftplusAlphaBetaTensor.distribution
tf.contrib.bayesflow.stochastic_tensor.InverseGammaWithSoftplusAlphaBetaTensor.dtype
tf.contrib.bayesflow.stochastic_tensor.InverseGammaWithSoftplusAlphaBetaTensor.entropy(name='entropy')
tf.contrib.bayesflow.stochastic_tensor.InverseGammaWithSoftplusAlphaBetaTensor.graph
tf.contrib.bayesflow.stochastic_tensor.InverseGammaWithSoftplusAlphaBetaTensor.input_dict
tf.contrib.bayesflow.stochastic_tensor.InverseGammaWithSoftplusAlphaBetaTensor.loss(final_loss, name='Loss')
tf.contrib.bayesflow.stochastic_tensor.InverseGammaWithSoftplusAlphaBetaTensor.mean(name='mean')
tf.contrib.bayesflow.stochastic_tensor.InverseGammaWithSoftplusAlphaBetaTensor.name
tf.contrib.bayesflow.stochastic_tensor.InverseGammaWithSoftplusAlphaBetaTensor.value(name='value')
tf.contrib.bayesflow.stochastic_tensor.InverseGammaWithSoftplusAlphaBetaTensor.value_type
class tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor
LaplaceTensor is a StochasticTensor backed by the distribution Laplace.
tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor.clone(name=None, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor.distribution
tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor.dtype
tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor.entropy(name='entropy')
tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor.graph
tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor.input_dict
tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor.loss(final_loss, name='Loss')
tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor.mean(name='mean')
tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor.name
tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor.value(name='value')
tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor.value_type
class tf.contrib.bayesflow.stochastic_tensor.LaplaceWithSoftplusScaleTensor
LaplaceWithSoftplusScaleTensor is a StochasticTensor backed by the distribution LaplaceWithSoftplusScale.
tf.contrib.bayesflow.stochastic_tensor.LaplaceWithSoftplusScaleTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.LaplaceWithSoftplusScaleTensor.clone(name=None, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.LaplaceWithSoftplusScaleTensor.distribution
tf.contrib.bayesflow.stochastic_tensor.LaplaceWithSoftplusScaleTensor.dtype
tf.contrib.bayesflow.stochastic_tensor.LaplaceWithSoftplusScaleTensor.entropy(name='entropy')
tf.contrib.bayesflow.stochastic_tensor.LaplaceWithSoftplusScaleTensor.graph
tf.contrib.bayesflow.stochastic_tensor.LaplaceWithSoftplusScaleTensor.input_dict
tf.contrib.bayesflow.stochastic_tensor.LaplaceWithSoftplusScaleTensor.loss(final_loss, name='Loss')
tf.contrib.bayesflow.stochastic_tensor.LaplaceWithSoftplusScaleTensor.mean(name='mean')
tf.contrib.bayesflow.stochastic_tensor.LaplaceWithSoftplusScaleTensor.name
tf.contrib.bayesflow.stochastic_tensor.LaplaceWithSoftplusScaleTensor.value(name='value')
tf.contrib.bayesflow.stochastic_tensor.LaplaceWithSoftplusScaleTensor.value_type
class tf.contrib.bayesflow.stochastic_tensor.MixtureTensor
MixtureTensor is a StochasticTensor backed by the distribution Mixture.
tf.contrib.bayesflow.stochastic_tensor.MixtureTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.MixtureTensor.clone(name=None, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.MixtureTensor.distribution
tf.contrib.bayesflow.stochastic_tensor.MixtureTensor.dtype
tf.contrib.bayesflow.stochastic_tensor.MixtureTensor.entropy(name='entropy')
tf.contrib.bayesflow.stochastic_tensor.MixtureTensor.graph
tf.contrib.bayesflow.stochastic_tensor.MixtureTensor.input_dict
tf.contrib.bayesflow.stochastic_tensor.MixtureTensor.loss(final_loss, name='Loss')
tf.contrib.bayesflow.stochastic_tensor.MixtureTensor.mean(name='mean')
tf.contrib.bayesflow.stochastic_tensor.MixtureTensor.name
tf.contrib.bayesflow.stochastic_tensor.MixtureTensor.value(name='value')
tf.contrib.bayesflow.stochastic_tensor.MixtureTensor.value_type
class tf.contrib.bayesflow.stochastic_tensor.MultinomialTensor
MultinomialTensor is a StochasticTensor backed by the distribution Multinomial.
tf.contrib.bayesflow.stochastic_tensor.MultinomialTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.MultinomialTensor.clone(name=None, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.MultinomialTensor.distribution
tf.contrib.bayesflow.stochastic_tensor.MultinomialTensor.dtype
tf.contrib.bayesflow.stochastic_tensor.MultinomialTensor.entropy(name='entropy')
tf.contrib.bayesflow.stochastic_tensor.MultinomialTensor.graph
tf.contrib.bayesflow.stochastic_tensor.MultinomialTensor.input_dict
tf.contrib.bayesflow.stochastic_tensor.MultinomialTensor.loss(final_loss, name='Loss')
tf.contrib.bayesflow.stochastic_tensor.MultinomialTensor.mean(name='mean')
tf.contrib.bayesflow.stochastic_tensor.MultinomialTensor.name
tf.contrib.bayesflow.stochastic_tensor.MultinomialTensor.value(name='value')
tf.contrib.bayesflow.stochastic_tensor.MultinomialTensor.value_type
class tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalCholeskyTensor
MultivariateNormalCholeskyTensor is a StochasticTensor backed by the distribution MultivariateNormalCholesky.
tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalCholeskyTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalCholeskyTensor.clone(name=None, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalCholeskyTensor.distribution
tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalCholeskyTensor.dtype
tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalCholeskyTensor.entropy(name='entropy')
tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalCholeskyTensor.graph
tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalCholeskyTensor.input_dict
tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalCholeskyTensor.loss(final_loss, name='Loss')
tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalCholeskyTensor.mean(name='mean')
tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalCholeskyTensor.name
tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalCholeskyTensor.value(name='value')
tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalCholeskyTensor.value_type
class tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor
MultivariateNormalDiagTensor is a StochasticTensor backed by the distribution MultivariateNormalDiag.
tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.clone(name=None, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.distribution
tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.dtype
tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.entropy(name='entropy')
tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.graph
tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.input_dict
tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.loss(final_loss, name='Loss')
tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.mean(name='mean')
tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.name
tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.value(name='value')
tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagTensor.value_type
class tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagPlusVDVTTensor
MultivariateNormalDiagPlusVDVTTensor is a StochasticTensor backed by the distribution MultivariateNormalDiagPlusVDVT.
tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagPlusVDVTTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagPlusVDVTTensor.clone(name=None, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagPlusVDVTTensor.distribution
tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagPlusVDVTTensor.dtype
tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagPlusVDVTTensor.entropy(name='entropy')
tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagPlusVDVTTensor.graph
tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagPlusVDVTTensor.input_dict
tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagPlusVDVTTensor.loss(final_loss, name='Loss')
tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagPlusVDVTTensor.mean(name='mean')
tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagPlusVDVTTensor.name
tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagPlusVDVTTensor.value(name='value')
tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagPlusVDVTTensor.value_type
class tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagWithSoftplusStDevTensor
MultivariateNormalDiagWithSoftplusStDevTensor is a StochasticTensor backed by the distribution MultivariateNormalDiagWithSoftplusStDev.
tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagWithSoftplusStDevTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagWithSoftplusStDevTensor.clone(name=None, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagWithSoftplusStDevTensor.distribution
tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagWithSoftplusStDevTensor.dtype
tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagWithSoftplusStDevTensor.entropy(name='entropy')
tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagWithSoftplusStDevTensor.graph
tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagWithSoftplusStDevTensor.input_dict
tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagWithSoftplusStDevTensor.loss(final_loss, name='Loss')
tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagWithSoftplusStDevTensor.mean(name='mean')
tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagWithSoftplusStDevTensor.name
tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagWithSoftplusStDevTensor.value(name='value')
tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagWithSoftplusStDevTensor.value_type
class tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalFullTensor
MultivariateNormalFullTensor is a StochasticTensor backed by the distribution MultivariateNormalFull.
tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalFullTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalFullTensor.clone(name=None, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalFullTensor.distribution
tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalFullTensor.dtype
tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalFullTensor.entropy(name='entropy')
tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalFullTensor.graph
tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalFullTensor.input_dict
tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalFullTensor.loss(final_loss, name='Loss')
tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalFullTensor.mean(name='mean')
tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalFullTensor.name
tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalFullTensor.value(name='value')
tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalFullTensor.value_type
class tf.contrib.bayesflow.stochastic_tensor.NormalTensor
NormalTensor is a StochasticTensor backed by the distribution Normal.
tf.contrib.bayesflow.stochastic_tensor.NormalTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.NormalTensor.clone(name=None, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.NormalTensor.distribution
tf.contrib.bayesflow.stochastic_tensor.NormalTensor.dtype
tf.contrib.bayesflow.stochastic_tensor.NormalTensor.entropy(name='entropy')
tf.contrib.bayesflow.stochastic_tensor.NormalTensor.graph
tf.contrib.bayesflow.stochastic_tensor.NormalTensor.input_dict
tf.contrib.bayesflow.stochastic_tensor.NormalTensor.loss(final_loss, name='Loss')
tf.contrib.bayesflow.stochastic_tensor.NormalTensor.mean(name='mean')
tf.contrib.bayesflow.stochastic_tensor.NormalTensor.name
tf.contrib.bayesflow.stochastic_tensor.NormalTensor.value(name='value')
tf.contrib.bayesflow.stochastic_tensor.NormalTensor.value_type
class tf.contrib.bayesflow.stochastic_tensor.NormalWithSoftplusSigmaTensor
NormalWithSoftplusSigmaTensor is a StochasticTensor backed by the distribution NormalWithSoftplusSigma.
tf.contrib.bayesflow.stochastic_tensor.NormalWithSoftplusSigmaTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.NormalWithSoftplusSigmaTensor.clone(name=None, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.NormalWithSoftplusSigmaTensor.distribution
tf.contrib.bayesflow.stochastic_tensor.NormalWithSoftplusSigmaTensor.dtype
tf.contrib.bayesflow.stochastic_tensor.NormalWithSoftplusSigmaTensor.entropy(name='entropy')
tf.contrib.bayesflow.stochastic_tensor.NormalWithSoftplusSigmaTensor.graph
tf.contrib.bayesflow.stochastic_tensor.NormalWithSoftplusSigmaTensor.input_dict
tf.contrib.bayesflow.stochastic_tensor.NormalWithSoftplusSigmaTensor.loss(final_loss, name='Loss')
tf.contrib.bayesflow.stochastic_tensor.NormalWithSoftplusSigmaTensor.mean(name='mean')
tf.contrib.bayesflow.stochastic_tensor.NormalWithSoftplusSigmaTensor.name
tf.contrib.bayesflow.stochastic_tensor.NormalWithSoftplusSigmaTensor.value(name='value')
tf.contrib.bayesflow.stochastic_tensor.NormalWithSoftplusSigmaTensor.value_type
class tf.contrib.bayesflow.stochastic_tensor.PoissonTensor
PoissonTensor is a StochasticTensor backed by the distribution Poisson.
tf.contrib.bayesflow.stochastic_tensor.PoissonTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.PoissonTensor.clone(name=None, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.PoissonTensor.distribution
tf.contrib.bayesflow.stochastic_tensor.PoissonTensor.dtype
tf.contrib.bayesflow.stochastic_tensor.PoissonTensor.entropy(name='entropy')
tf.contrib.bayesflow.stochastic_tensor.PoissonTensor.graph
tf.contrib.bayesflow.stochastic_tensor.PoissonTensor.input_dict
tf.contrib.bayesflow.stochastic_tensor.PoissonTensor.loss(final_loss, name='Loss')
tf.contrib.bayesflow.stochastic_tensor.PoissonTensor.mean(name='mean')
tf.contrib.bayesflow.stochastic_tensor.PoissonTensor.name
tf.contrib.bayesflow.stochastic_tensor.PoissonTensor.value(name='value')
tf.contrib.bayesflow.stochastic_tensor.PoissonTensor.value_type
class tf.contrib.bayesflow.stochastic_tensor.QuantizedDistributionTensor
QuantizedDistributionTensor is a StochasticTensor backed by the distribution QuantizedDistribution.
tf.contrib.bayesflow.stochastic_tensor.QuantizedDistributionTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.QuantizedDistributionTensor.clone(name=None, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.QuantizedDistributionTensor.distribution
tf.contrib.bayesflow.stochastic_tensor.QuantizedDistributionTensor.dtype
tf.contrib.bayesflow.stochastic_tensor.QuantizedDistributionTensor.entropy(name='entropy')
tf.contrib.bayesflow.stochastic_tensor.QuantizedDistributionTensor.graph
tf.contrib.bayesflow.stochastic_tensor.QuantizedDistributionTensor.input_dict
tf.contrib.bayesflow.stochastic_tensor.QuantizedDistributionTensor.loss(final_loss, name='Loss')
tf.contrib.bayesflow.stochastic_tensor.QuantizedDistributionTensor.mean(name='mean')
tf.contrib.bayesflow.stochastic_tensor.QuantizedDistributionTensor.name
tf.contrib.bayesflow.stochastic_tensor.QuantizedDistributionTensor.value(name='value')
tf.contrib.bayesflow.stochastic_tensor.QuantizedDistributionTensor.value_type
class tf.contrib.bayesflow.stochastic_tensor.StudentTTensor
StudentTTensor is a StochasticTensor backed by the distribution StudentT.
tf.contrib.bayesflow.stochastic_tensor.StudentTTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.StudentTTensor.clone(name=None, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.StudentTTensor.distribution
tf.contrib.bayesflow.stochastic_tensor.StudentTTensor.dtype
tf.contrib.bayesflow.stochastic_tensor.StudentTTensor.entropy(name='entropy')
tf.contrib.bayesflow.stochastic_tensor.StudentTTensor.graph
tf.contrib.bayesflow.stochastic_tensor.StudentTTensor.input_dict
tf.contrib.bayesflow.stochastic_tensor.StudentTTensor.loss(final_loss, name='Loss')
tf.contrib.bayesflow.stochastic_tensor.StudentTTensor.mean(name='mean')
tf.contrib.bayesflow.stochastic_tensor.StudentTTensor.name
tf.contrib.bayesflow.stochastic_tensor.StudentTTensor.value(name='value')
tf.contrib.bayesflow.stochastic_tensor.StudentTTensor.value_type
class tf.contrib.bayesflow.stochastic_tensor.StudentTWithAbsDfSoftplusSigmaTensor
StudentTWithAbsDfSoftplusSigmaTensor is a StochasticTensor backed by the distribution StudentTWithAbsDfSoftplusSigma.
tf.contrib.bayesflow.stochastic_tensor.StudentTWithAbsDfSoftplusSigmaTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.StudentTWithAbsDfSoftplusSigmaTensor.clone(name=None, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.StudentTWithAbsDfSoftplusSigmaTensor.distribution
tf.contrib.bayesflow.stochastic_tensor.StudentTWithAbsDfSoftplusSigmaTensor.dtype
tf.contrib.bayesflow.stochastic_tensor.StudentTWithAbsDfSoftplusSigmaTensor.entropy(name='entropy')
tf.contrib.bayesflow.stochastic_tensor.StudentTWithAbsDfSoftplusSigmaTensor.graph
tf.contrib.bayesflow.stochastic_tensor.StudentTWithAbsDfSoftplusSigmaTensor.input_dict
tf.contrib.bayesflow.stochastic_tensor.StudentTWithAbsDfSoftplusSigmaTensor.loss(final_loss, name='Loss')
tf.contrib.bayesflow.stochastic_tensor.StudentTWithAbsDfSoftplusSigmaTensor.mean(name='mean')
tf.contrib.bayesflow.stochastic_tensor.StudentTWithAbsDfSoftplusSigmaTensor.name
tf.contrib.bayesflow.stochastic_tensor.StudentTWithAbsDfSoftplusSigmaTensor.value(name='value')
tf.contrib.bayesflow.stochastic_tensor.StudentTWithAbsDfSoftplusSigmaTensor.value_type
class tf.contrib.bayesflow.stochastic_tensor.TransformedDistributionTensor
TransformedDistributionTensor is a StochasticTensor backed by the distribution TransformedDistribution.
tf.contrib.bayesflow.stochastic_tensor.TransformedDistributionTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.TransformedDistributionTensor.clone(name=None, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.TransformedDistributionTensor.distribution
tf.contrib.bayesflow.stochastic_tensor.TransformedDistributionTensor.dtype
tf.contrib.bayesflow.stochastic_tensor.TransformedDistributionTensor.entropy(name='entropy')
tf.contrib.bayesflow.stochastic_tensor.TransformedDistributionTensor.graph
tf.contrib.bayesflow.stochastic_tensor.TransformedDistributionTensor.input_dict
tf.contrib.bayesflow.stochastic_tensor.TransformedDistributionTensor.loss(final_loss, name='Loss')
tf.contrib.bayesflow.stochastic_tensor.TransformedDistributionTensor.mean(name='mean')
tf.contrib.bayesflow.stochastic_tensor.TransformedDistributionTensor.name
tf.contrib.bayesflow.stochastic_tensor.TransformedDistributionTensor.value(name='value')
tf.contrib.bayesflow.stochastic_tensor.TransformedDistributionTensor.value_type
class tf.contrib.bayesflow.stochastic_tensor.UniformTensor
UniformTensor is a StochasticTensor backed by the distribution Uniform.
tf.contrib.bayesflow.stochastic_tensor.UniformTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.UniformTensor.clone(name=None, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.UniformTensor.distribution
tf.contrib.bayesflow.stochastic_tensor.UniformTensor.dtype
tf.contrib.bayesflow.stochastic_tensor.UniformTensor.entropy(name='entropy')
tf.contrib.bayesflow.stochastic_tensor.UniformTensor.graph
tf.contrib.bayesflow.stochastic_tensor.UniformTensor.input_dict
tf.contrib.bayesflow.stochastic_tensor.UniformTensor.loss(final_loss, name='Loss')
tf.contrib.bayesflow.stochastic_tensor.UniformTensor.mean(name='mean')
tf.contrib.bayesflow.stochastic_tensor.UniformTensor.name
tf.contrib.bayesflow.stochastic_tensor.UniformTensor.value(name='value')
tf.contrib.bayesflow.stochastic_tensor.UniformTensor.value_type
class tf.contrib.bayesflow.stochastic_tensor.WishartCholeskyTensor
WishartCholeskyTensor is a StochasticTensor backed by the distribution WishartCholesky.
tf.contrib.bayesflow.stochastic_tensor.WishartCholeskyTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.WishartCholeskyTensor.clone(name=None, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.WishartCholeskyTensor.distribution
tf.contrib.bayesflow.stochastic_tensor.WishartCholeskyTensor.dtype
tf.contrib.bayesflow.stochastic_tensor.WishartCholeskyTensor.entropy(name='entropy')
tf.contrib.bayesflow.stochastic_tensor.WishartCholeskyTensor.graph
tf.contrib.bayesflow.stochastic_tensor.WishartCholeskyTensor.input_dict
tf.contrib.bayesflow.stochastic_tensor.WishartCholeskyTensor.loss(final_loss, name='Loss')
tf.contrib.bayesflow.stochastic_tensor.WishartCholeskyTensor.mean(name='mean')
tf.contrib.bayesflow.stochastic_tensor.WishartCholeskyTensor.name
tf.contrib.bayesflow.stochastic_tensor.WishartCholeskyTensor.value(name='value')
tf.contrib.bayesflow.stochastic_tensor.WishartCholeskyTensor.value_type
class tf.contrib.bayesflow.stochastic_tensor.WishartFullTensor
WishartFullTensor is a StochasticTensor backed by the distribution WishartFull.
tf.contrib.bayesflow.stochastic_tensor.WishartFullTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.WishartFullTensor.clone(name=None, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.WishartFullTensor.distribution
tf.contrib.bayesflow.stochastic_tensor.WishartFullTensor.dtype
tf.contrib.bayesflow.stochastic_tensor.WishartFullTensor.entropy(name='entropy')
tf.contrib.bayesflow.stochastic_tensor.WishartFullTensor.graph
tf.contrib.bayesflow.stochastic_tensor.WishartFullTensor.input_dict
tf.contrib.bayesflow.stochastic_tensor.WishartFullTensor.loss(final_loss, name='Loss')
tf.contrib.bayesflow.stochastic_tensor.WishartFullTensor.mean(name='mean')
tf.contrib.bayesflow.stochastic_tensor.WishartFullTensor.name
tf.contrib.bayesflow.stochastic_tensor.WishartFullTensor.value(name='value')
tf.contrib.bayesflow.stochastic_tensor.WishartFullTensor.value_type
Other Functions and Classes
class tf.contrib.bayesflow.stochastic_tensor.ObservedStochasticTensor
A StochasticTensor with an observed value.
tf.contrib.bayesflow.stochastic_tensor.ObservedStochasticTensor.__init__(dist_cls, value, name=None, **dist_args)
Construct an ObservedStochasticTensor.
ObservedStochasticTensor will instantiate a distribution from dist_cls
and dist_args but use the provided value instead of sampling from the
distribution. The provided value argument must be appropriately shaped
to have come from the constructed distribution.
Args:
dist_cls: aDistributionclass.value: a Tensor containing the observed valuename: a name for thisObservedStochasticTensorand its ops.**dist_args: keyword arguments to be passed through todist_clson construction.
Raises:
TypeError: ifdist_clsis not aDistribution.ValueError: ifvalueis not compatible with the distribution.