Variables

Note: Functions taking Tensor arguments can also take anything accepted by tf.convert_to_tensor.

[TOC]

Variables


class tf.Variable

See the Variables How To for a high level overview.

A variable maintains state in the graph across calls to run(). You add a variable to the graph by constructing an instance of the class Variable.

The Variable() constructor requires an initial value for the variable, which can be a Tensor of any type and shape. The initial value defines the type and shape of the variable. After construction, the type and shape of the variable are fixed. The value can be changed using one of the assign methods.

If you want to change the shape of a variable later you have to use an assign Op with validate_shape=False.

Just like any Tensor, variables created with Variable() can be used as inputs for other Ops in the graph. Additionally, all the operators overloaded for the Tensor class are carried over to variables, so you can also add nodes to the graph by just doing arithmetic on variables.

import tensorflow as tf

# Create a variable.
w = tf.Variable(<initial-value>, name=<optional-name>)

# Use the variable in the graph like any Tensor.
y = tf.matmul(w, ...another variable or tensor...)

# The overloaded operators are available too.
z = tf.sigmoid(w + y)

# Assign a new value to the variable with `assign()` or a related method.
w.assign(w + 1.0)
w.assign_add(1.0)

When you launch the graph, variables have to be explicitly initialized before you can run Ops that use their value. You can initialize a variable by running its initializer op, restoring the variable from a save file, or simply running an assign Op that assigns a value to the variable. In fact, the variable initializer op is just an assign Op that assigns the variable's initial value to the variable itself.

# Launch the graph in a session.
with tf.Session() as sess:
    # Run the variable initializer.
    sess.run(w.initializer)
    # ...you now can run ops that use the value of 'w'...

The most common initialization pattern is to use the convenience function initialize_all_variables() to add an Op to the graph that initializes all the variables. You then run that Op after launching the graph.

# Add an Op to initialize all variables.
init_op = tf.initialize_all_variables()

# Launch the graph in a session.
with tf.Session() as sess:
    # Run the Op that initializes all variables.
    sess.run(init_op)
    # ...you can now run any Op that uses variable values...

If you need to create a variable with an initial value dependent on another variable, use the other variable's initialized_value(). This ensures that variables are initialized in the right order.

All variables are automatically collected in the graph where they are created. By default, the constructor adds the new variable to the graph collection GraphKeys.VARIABLES. The convenience function all_variables() returns the contents of that collection.

When building a machine learning model it is often convenient to distinguish between variables holding the trainable model parameters and other variables such as a global step variable used to count training steps. To make this easier, the variable constructor supports a trainable=<bool> parameter. If True, the new variable is also added to the graph collection GraphKeys.TRAINABLE_VARIABLES. The convenience function trainable_variables() returns the contents of this collection. The various Optimizer classes use this collection as the default list of variables to optimize.

Creating a variable.


tf.Variable.__init__(initial_value=None, trainable=True, collections=None, validate_shape=True, caching_device=None, name=None, variable_def=None, dtype=None, expected_shape=None)

Creates a new variable with value initial_value.

The new variable is added to the graph collections listed in collections, which defaults to [GraphKeys.VARIABLES].

If trainable is True the variable is also added to the graph collection GraphKeys.TRAINABLE_VARIABLES.

This constructor creates both a variable Op and an assign Op to set the variable to its initial value.

Args:
  • initial_value: A Tensor, or Python object convertible to a Tensor, which is the initial value for the Variable. The initial value must have a shape specified unless validate_shape is set to False. Can also be a callable with no argument that returns the initial value when called. In that case, dtype must be specified. (Note that initializer functions from init_ops.py must first be bound to a shape before being used here.)
  • trainable: If True, the default, also adds the variable to the graph collection GraphKeys.TRAINABLE_VARIABLES. This collection is used as the default list of variables to use by the Optimizer classes.
  • collections: List of graph collections keys. The new variable is added to these collections. Defaults to [GraphKeys.VARIABLES].
  • validate_shape: If False, allows the variable to be initialized with a value of unknown shape. If True, the default, the shape of initial_value must be known.
  • caching_device: Optional device string describing where the Variable should be cached for reading. Defaults to the Variable's device. If not None, caches on another device. Typical use is to cache on the device where the Ops using the Variable reside, to deduplicate copying through Switch and other conditional statements.
  • name: Optional name for the variable. Defaults to 'Variable' and gets uniquified automatically.
  • variable_def: VariableDef protocol buffer. If not None, recreates the Variable object with its contents. variable_def and the other arguments are mutually exclusive.
  • dtype: If set, initial_value will be converted to the given type. If None, either the datatype will be kept (if initial_value is a Tensor), or convert_to_tensor will decide.
  • expected_shape: A TensorShape. If set, initial_value is expected to have this shape.
Raises:
  • ValueError: If both variable_def and initial_value are specified.
  • ValueError: If the initial value is not specified, or does not have a shape and validate_shape is True.

tf.Variable.initialized_value()

Returns the value of the initialized variable.

You should use this instead of the variable itself to initialize another variable with a value that depends on the value of this variable.

# Initialize 'v' with a random tensor.
v = tf.Variable(tf.truncated_normal([10, 40]))
# Use `initialized_value` to guarantee that `v` has been
# initialized before its value is used to initialize `w`.
# The random values are picked only once.
w = tf.Variable(v.initialized_value() * 2.0)
Returns:

A Tensor holding the value of this variable after its initializer has run.

Changing a variable value.


tf.Variable.assign(value, use_locking=False)

Assigns a new value to the variable.

This is essentially a shortcut for assign(self, value).

Args:
  • value: A Tensor. The new value for this variable.
  • use_locking: If True, use locking during the assignment.
Returns:

A Tensor that will hold the new value of this variable after the assignment has completed.


tf.Variable.assign_add(delta, use_locking=False)

Adds a value to this variable.

This is essentially a shortcut for assign_add(self, delta).

Args:
  • delta: A Tensor. The value to add to this variable.
  • use_locking: If True, use locking during the operation.
Returns:

A Tensor that will hold the new value of this variable after the addition has completed.


tf.Variable.assign_sub(delta, use_locking=False)

Subtracts a value from this variable.

This is essentially a shortcut for assign_sub(self, delta).

Args:
  • delta: A Tensor. The value to subtract from this variable.
  • use_locking: If True, use locking during the operation.
Returns:

A Tensor that will hold the new value of this variable after the subtraction has completed.


tf.Variable.scatter_sub(sparse_delta, use_locking=False)

Subtracts IndexedSlices from this variable.

This is essentially a shortcut for scatter_sub(self, sparse_delta.indices, sparse_delta.values).

Args:
  • sparse_delta: IndexedSlices to be subtracted from this variable.
  • use_locking: If True, use locking during the operation.
Returns:

A Tensor that will hold the new value of this variable after the scattered subtraction has completed.

Raises:
  • ValueError: if sparse_delta is not an IndexedSlices.

tf.Variable.count_up_to(limit)

Increments this variable until it reaches limit.

When that Op is run it tries to increment the variable by 1. If incrementing the variable would bring it above limit then the Op raises the exception OutOfRangeError.

If no error is raised, the Op outputs the value of the variable before the increment.

This is essentially a shortcut for count_up_to(self, limit).

Args:
  • limit: value at which incrementing the variable raises an error.
Returns:

A Tensor that will hold the variable value before the increment. If no other Op modifies this variable, the values produced will all be distinct.


tf.Variable.eval(session=None)

In a session, computes and returns the value of this variable.

This is not a graph construction method, it does not add ops to the graph.

This convenience method requires a session where the graph containing this variable has been launched. If no session is passed, the default session is used. See the Session class for more information on launching a graph and on sessions.

v = tf.Variable([1, 2])
init = tf.initialize_all_variables()

with tf.Session() as sess:
    sess.run(init)
    # Usage passing the session explicitly.
    print(v.eval(sess))
    # Usage with the default session.  The 'with' block
    # above makes 'sess' the default session.
    print(v.eval())
Args:
  • session: The session to use to evaluate this variable. If none, the default session is used.
Returns:

A numpy ndarray with a copy of the value of this variable.

Properties.


tf.Variable.name

The name of this variable.


tf.Variable.dtype

The DType of this variable.


tf.Variable.get_shape()

The TensorShape of this variable.

Returns:

A TensorShape.


tf.Variable.device

The device of this variable.


tf.Variable.initializer

The initializer operation for this variable.


tf.Variable.graph

The Graph of this variable.


tf.Variable.op

The Operation of this variable.

Other Methods


tf.Variable.__abs__(a, *args)

Computes the absolute value of a tensor.

Given a tensor of real numbers x, this operation returns a tensor containing the absolute value of each element in x. For example, if x is an input element and y is an output element, this operation computes \(y = |x|\).

See tf.complex_abs() to compute the absolute value of a complex number.

Args:
  • x: A Tensor or SparseTensor of type float32, float64, int32, or int64.
  • name: A name for the operation (optional).
Returns:

A Tensor or SparseTensor the same size and type as x with absolute values.


tf.Variable.__add__(a, *args)

Returns x + y element-wise.

NOTE: Add supports broadcasting. AddN does not. More about broadcasting here

Args:
  • x: A Tensor. Must be one of the following types: half, float32, float64, uint8, int8, int16, int32, int64, complex64, complex128, string.
  • y: A Tensor. Must have the same type as x.
  • name: A name for the operation (optional).
Returns:

A Tensor. Has the same type as x.


tf.Variable.__and__(a, *args)

Returns the truth value of x AND y element-wise.

NOTE: LogicalAnd supports broadcasting. More about broadcasting here

Args:
  • x: A Tensor of type bool.
  • y: A Tensor of type bool.
  • name: A name for the operation (optional).
Returns:

A Tensor of type bool.


tf.Variable.__div__(a, *args)

Returns x / y element-wise.

NOTE: Div supports broadcasting. More about broadcasting here

Args:
  • x: A Tensor. Must be one of the following types: half, float32, float64, uint8, int8, uint16, int16, int32, int64, complex64, complex128.
  • y: A Tensor. Must have the same type as x.
  • name: A name for the operation (optional).
Returns:

A Tensor. Has the same type as x.


tf.Variable.__floordiv__(a, *args)

Divides x / y elementwise, rounding down for floating point.

The same as tf.div(x,y) for integers, but uses tf.floor(tf.div(x,y)) for floating point arguments so that the result is always an integer (though possibly an integer represented as floating point). This op is generated by x // y floor division in Python 3 and in Python 2.7 with from __future__ import division.

Note that for efficiency, floordiv uses C semantics for negative numbers (unlike Python and Numpy).

x and y must have the same type, and the result will have the same type as well.

Args:
  • x: Tensor numerator of real numeric type.
  • y: Tensor denominator of real numeric type.
  • name: A name for the operation (optional).
Returns:

x / y rounded down (except possibly towards zero for negative integers).

Raises:
  • TypeError: If the inputs are complex.

tf.Variable.__ge__(a, *args)

Returns the truth value of (x >= y) element-wise.

NOTE: GreaterEqual supports broadcasting. More about broadcasting here

Args:
  • x: A Tensor. Must be one of the following types: float32, float64, int32, int64, uint8, int16, int8, uint16, half.
  • y: A Tensor. Must have the same type as x.
  • name: A name for the operation (optional).
Returns:

A Tensor of type bool.


tf.Variable.__getitem__(var, slice_spec)

Creates a slice helper object given a variable.

This allows creating a sub-tensor from part of the current contents of a variable. See Tensor.__getitem__ for detailed examples of slicing.

This function in addition also allows assignment to a sliced range. This is similar to __setitem__ functionality in Python. However, the syntax is different so that the user can capture the assignment operation for grouping or passing to sess.run(). For example,

import tensorflow as tf
A = tf.Variable([[1,2,3], [4,5,6], [7,8,9]], dtype=tf.float32)
with tf.Session() as sess:
  sess.run(tf.initialize_all_variables())
  print sess.run(A[:2, :2]) # => [[1,2], [4,5]]

  op = A[:2,:2].assign(22. * tf.ones((2, 2)))
  print sess.run(op) # => [[22, 22, 3], [22, 22, 6], [7,8,9]]

Note that assignments currently do not support NumPy broadcasting semantics.

Args:
  • var: An ops.Variable object.
  • slice_spec: The arguments to Tensor.__getitem__.
Returns:

The appropriate slice of "tensor", based on "slice_spec". As an operator. The operator also has a assign() method that can be used to generate an assignment operator.

Raises:
  • ValueError: If a slice range is negative size.
  • TypeError: If the slice indices aren't int, slice, or Ellipsis.

tf.Variable.__gt__(a, *args)

Returns the truth value of (x > y) element-wise.

NOTE: Greater supports broadcasting. More about broadcasting here

Args:
  • x: A Tensor. Must be one of the following types: float32, float64, int32, int64, uint8, int16, int8, uint16, half.
  • y: A Tensor. Must have the same type as x.
  • name: A name for the operation (optional).
Returns:

A Tensor of type bool.


tf.Variable.__invert__(a, *args)

Returns the truth value of NOT x element-wise.

Args:
  • x: A Tensor of type bool.
  • name: A name for the operation (optional).
Returns:

A Tensor of type bool.


tf.Variable.__iter__()

Dummy method to prevent iteration. Do not call.

NOTE(mrry): If we register getitem as an overloaded operator, Python will valiantly attempt to iterate over the variable's Tensor from 0 to infinity. Declaring this method prevents this unintended behavior.

Raises:
  • TypeError: when invoked.

tf.Variable.__le__(a, *args)

Returns the truth value of (x <= y) element-wise.

NOTE: LessEqual supports broadcasting. More about broadcasting here

Args:
  • x: A Tensor. Must be one of the following types: float32, float64, int32, int64, uint8, int16, int8, uint16, half.
  • y: A Tensor. Must have the same type as x.
  • name: A name for the operation (optional).
Returns:

A Tensor of type bool.


tf.Variable.__lt__(a, *args)

Returns the truth value of (x < y) element-wise.

NOTE: Less supports broadcasting. More about broadcasting here

Args:
  • x: A Tensor. Must be one of the following types: float32, float64, int32, int64, uint8, int16, int8, uint16, half.
  • y: A Tensor. Must have the same type as x.
  • name: A name for the operation (optional).
Returns:

A Tensor of type bool.


tf.Variable.__mod__(a, *args)

Returns element-wise remainder of division.

NOTE: Mod supports broadcasting. More about broadcasting here

Args:
  • x: A Tensor. Must be one of the following types: int32, int64, float32, float64.
  • y: A Tensor. Must have the same type as x.
  • name: A name for the operation (optional).
Returns:

A Tensor. Has the same type as x.


tf.Variable.__mul__(a, *args)

Dispatches cwise mul for "DenseDense" and "DenseSparse".


tf.Variable.__neg__(a, *args)

Computes numerical negative value element-wise.

I.e., \(y = -x\).

Args:
  • x: A Tensor. Must be one of the following types: half, float32, float64, int32, int64, complex64, complex128.
  • name: A name for the operation (optional).
Returns:

A Tensor. Has the same type as x.


tf.Variable.__or__(a, *args)

Returns the truth value of x OR y element-wise.

NOTE: LogicalOr supports broadcasting. More about broadcasting here

Args:
  • x: A Tensor of type bool.
  • y: A Tensor of type bool.
  • name: A name for the operation (optional).
Returns:

A Tensor of type bool.


tf.Variable.__pow__(a, *args)

Computes the power of one value to another.

Given a tensor x and a tensor y, this operation computes \(x^y\) for corresponding elements in x and y. For example:

# tensor 'x' is [[2, 2], [3, 3]]
# tensor 'y' is [[8, 16], [2, 3]]
tf.pow(x, y) ==> [[256, 65536], [9, 27]]
Args:
  • x: A Tensor of type float32, float64, int32, int64, complex64, or complex128.
  • y: A Tensor of type float32, float64, int32, int64, complex64, or complex128.
  • name: A name for the operation (optional).
Returns:

A Tensor.


tf.Variable.__radd__(a, *args)

Returns x + y element-wise.

NOTE: Add supports broadcasting. AddN does not. More about broadcasting here

Args:
  • x: A Tensor. Must be one of the following types: half, float32, float64, uint8, int8, int16, int32, int64, complex64, complex128, string.
  • y: A Tensor. Must have the same type as x.
  • name: A name for the operation (optional).
Returns:

A Tensor. Has the same type as x.


tf.Variable.__rand__(a, *args)

Returns the truth value of x AND y element-wise.

NOTE: LogicalAnd supports broadcasting. More about broadcasting here

Args:
  • x: A Tensor of type bool.
  • y: A Tensor of type bool.
  • name: A name for the operation (optional).
Returns:

A Tensor of type bool.


tf.Variable.__rdiv__(a, *args)

Returns x / y element-wise.

NOTE: Div supports broadcasting. More about broadcasting here

Args:
  • x: A Tensor. Must be one of the following types: half, float32, float64, uint8, int8, uint16, int16, int32, int64, complex64, complex128.
  • y: A Tensor. Must have the same type as x.
  • name: A name for the operation (optional).
Returns:

A Tensor. Has the same type as x.


tf.Variable.__rfloordiv__(a, *args)

Divides x / y elementwise, rounding down for floating point.

The same as tf.div(x,y) for integers, but uses tf.floor(tf.div(x,y)) for floating point arguments so that the result is always an integer (though possibly an integer represented as floating point). This op is generated by x // y floor division in Python 3 and in Python 2.7 with from __future__ import division.

Note that for efficiency, floordiv uses C semantics for negative numbers (unlike Python and Numpy).

x and y must have the same type, and the result will have the same type as well.

Args:
  • x: Tensor numerator of real numeric type.
  • y: Tensor denominator of real numeric type.
  • name: A name for the operation (optional).
Returns:

x / y rounded down (except possibly towards zero for negative integers).

Raises:
  • TypeError: If the inputs are complex.

tf.Variable.__rmod__(a, *args)

Returns element-wise remainder of division.

NOTE: Mod supports broadcasting. More about broadcasting here

Args:
  • x: A Tensor. Must be one of the following types: int32, int64, float32, float64.
  • y: A Tensor. Must have the same type as x.
  • name: A name for the operation (optional).
Returns:

A Tensor. Has the same type as x.


tf.Variable.__rmul__(a, *args)

Dispatches cwise mul for "DenseDense" and "DenseSparse".


tf.Variable.__ror__(a, *args)

Returns the truth value of x OR y element-wise.

NOTE: LogicalOr supports broadcasting. More about broadcasting here

Args:
  • x: A Tensor of type bool.
  • y: A Tensor of type bool.
  • name: A name for the operation (optional).
Returns:

A Tensor of type bool.


tf.Variable.__rpow__(a, *args)

Computes the power of one value to another.

Given a tensor x and a tensor y, this operation computes \(x^y\) for corresponding elements in x and y. For example:

# tensor 'x' is [[2, 2], [3, 3]]
# tensor 'y' is [[8, 16], [2, 3]]
tf.pow(x, y) ==> [[256, 65536], [9, 27]]
Args:
  • x: A Tensor of type float32, float64, int32, int64, complex64, or complex128.
  • y: A Tensor of type float32, float64, int32, int64, complex64, or complex128.
  • name: A name for the operation (optional).
Returns:

A Tensor.


tf.Variable.__rsub__(a, *args)

Returns x - y element-wise.

NOTE: Sub supports broadcasting. More about broadcasting here

Args:
  • x: A Tensor. Must be one of the following types: half, float32, float64, int32, int64, complex64, complex128.
  • y: A Tensor. Must have the same type as x.
  • name: A name for the operation (optional).
Returns:

A Tensor. Has the same type as x.


tf.Variable.__rtruediv__(a, *args)

Divides x / y elementwise, always producing floating point results.

The same as tf.div for floating point arguments, but casts integer arguments to floating point before dividing so that the result is always floating point. This op is generated by normal x / y division in Python 3 and in Python 2.7 with from __future__ import division. If you want integer division that rounds down, use x // y or tf.floordiv.

x and y must have the same numeric type. If the inputs are floating point, the output will have the same type. If the inputs are integral, the inputs are cast to float32 for int8 and int16 and float64 for int32 and int64 (matching the behavior of Numpy).

Args:
  • x: Tensor numerator of numeric type.
  • y: Tensor denominator of numeric type.
  • name: A name for the operation (optional).
Returns:

x / y evaluated in floating point.

Raises:
  • TypeError: If x and y have different dtypes.

tf.Variable.__rxor__(a, *args)

x ^ y = (x | y) & ~(x & y).


tf.Variable.__sub__(a, *args)

Returns x - y element-wise.

NOTE: Sub supports broadcasting. More about broadcasting here

Args:
  • x: A Tensor. Must be one of the following types: half, float32, float64, int32, int64, complex64, complex128.
  • y: A Tensor. Must have the same type as x.
  • name: A name for the operation (optional).
Returns:

A Tensor. Has the same type as x.


tf.Variable.__truediv__(a, *args)

Divides x / y elementwise, always producing floating point results.

The same as tf.div for floating point arguments, but casts integer arguments to floating point before dividing so that the result is always floating point. This op is generated by normal x / y division in Python 3 and in Python 2.7 with from __future__ import division. If you want integer division that rounds down, use x // y or tf.floordiv.

x and y must have the same numeric type. If the inputs are floating point, the output will have the same type. If the inputs are integral, the inputs are cast to float32 for int8 and int16 and float64 for int32 and int64 (matching the behavior of Numpy).

Args:
  • x: Tensor numerator of numeric type.
  • y: Tensor denominator of numeric type.
  • name: A name for the operation (optional).
Returns:

x / y evaluated in floating point.

Raises:
  • TypeError: If x and y have different dtypes.

tf.Variable.__xor__(a, *args)

x ^ y = (x | y) & ~(x & y).


tf.Variable.from_proto(variable_def)

Returns a Variable object created from variable_def.


tf.Variable.initial_value

Returns the Tensor used as the initial value for the variable.

Note that this is different from initialized_value() which runs the op that initializes the variable before returning its value. This method returns the tensor that is used by the op that initializes the variable.

Returns:

A Tensor.


tf.Variable.ref()

Returns a reference to this variable.

You usually do not need to call this method as all ops that need a reference to the variable call it automatically.

Returns is a Tensor which holds a reference to the variable. You can assign a new value to the variable by passing the tensor to an assign op. See value() if you want to get the value of the variable.

Returns:

A Tensor that is a reference to the variable.


tf.Variable.to_proto()

Converts a Variable to a VariableDef protocol buffer.

Returns:

A VariableDef protocol buffer.


tf.Variable.value()

Returns the last snapshot of this variable.

You usually do not need to call this method as all ops that need the value of the variable call it automatically through a convert_to_tensor() call.

Returns a Tensor which holds the value of the variable. You can not assign a new value to this tensor as it is not a reference to the variable. See ref() if you want to get a reference to the variable.

To avoid copies, if the consumer of the returned value is on the same device as the variable, this actually returns the live value of the variable, not a copy. Updates to the variable are seen by the consumer. If the consumer is on a different device it will get a copy of the variable.

Returns:

A Tensor containing the value of the variable.

Variable helper functions

TensorFlow provides a set of functions to help manage the set of variables collected in the graph.


tf.all_variables()

Returns all variables that must be saved/restored.

The Variable() constructor automatically adds new variables to the graph collection GraphKeys.VARIABLES. This convenience function returns the contents of that collection.

Returns:

A list of Variable objects.


tf.trainable_variables()

Returns all variables created with trainable=True.

When passed trainable=True, the Variable() constructor automatically adds new variables to the graph collection GraphKeys.TRAINABLE_VARIABLES. This convenience function returns the contents of that collection.

Returns:

A list of Variable objects.


tf.local_variables()

Returns all variables created with collection=[LOCAL_VARIABLES].

Returns:

A list of local Variable objects.


tf.model_variables()

Returns all variables in the MODEL_VARIABLES collection.

Returns:

A list of local Variable objects.


tf.moving_average_variables()

Returns all variables that maintain their moving averages.

If an ExponentialMovingAverage object is created and the apply() method is called on a list of variables, these variables will be added to the GraphKeys.MOVING_AVERAGE_VARIABLES collection. This convenience function returns the contents of that collection.

Returns:

A list of Variable objects.


tf.initialize_all_variables()

Returns an Op that initializes all variables.

This is just a shortcut for initialize_variables(all_variables())

Returns:

An Op that initializes all variables in the graph.


tf.initialize_variables(var_list, name='init')

Returns an Op that initializes a list of variables.

After you launch the graph in a session, you can run the returned Op to initialize all the variables in var_list. This Op runs all the initializers of the variables in var_list in parallel.

Calling initialize_variables() is equivalent to passing the list of initializers to Group().

If var_list is empty, however, the function still returns an Op that can be run. That Op just has no effect.

Args:
  • var_list: List of Variable objects to initialize.
  • name: Optional name for the returned operation.
Returns:

An Op that run the initializers of all the specified variables.


tf.initialize_local_variables()

Returns an Op that initializes all local variables.

This is just a shortcut for initialize_variables(local_variables())

Returns:

An Op that initializes all local variables in the graph.


tf.is_variable_initialized(variable)

Tests if a variable has been initialized.

Args:
  • variable: A Variable.
Returns:

Returns a scalar boolean Tensor, True if the variable has been initialized, False otherwise.


tf.report_uninitialized_variables(var_list=None, name='report_uninitialized_variables')

Adds ops to list the names of uninitialized variables.

When run, it returns a 1-D tensor containing the names of uninitialized variables if there are any, or an empty array if there are none.

Args:
  • var_list: List of Variable objects to check. Defaults to the value of all_variables() + local_variables()
  • name: Optional name of the Operation.
Returns:

A 1-D tensor containing names of the uninitialized variables, or an empty 1-D tensor if there are no variables or no uninitialized variables.


tf.assert_variables_initialized(var_list=None)

Returns an Op to check if variables are initialized.

NOTE: This function is obsolete and will be removed in 6 months. Please change your implementation to use report_uninitialized_variables().

When run, the returned Op will raise the exception FailedPreconditionError if any of the variables has not yet been initialized.

Note: This function is implemented by trying to fetch the values of the variables. If one of the variables is not initialized a message may be logged by the C++ runtime. This is expected.

Args:
  • var_list: List of Variable objects to check. Defaults to the value of all_variables().
Returns:

An Op, or None if there are no variables.


tf.assign(ref, value, validate_shape=None, use_locking=None, name=None)

Update 'ref' by assigning 'value' to it.

This operation outputs "ref" after the assignment is done. This makes it easier to chain operations that need to use the reset value.

Args:
  • ref: A mutable Tensor. Should be from a Variable node. May be uninitialized.
  • value: A Tensor. Must have the same type as ref. The value to be assigned to the variable.
  • validate_shape: An optional bool. Defaults to True. If true, the operation will validate that the shape of 'value' matches the shape of the Tensor being assigned to. If false, 'ref' will take on the shape of 'value'.
  • use_locking: An optional bool. Defaults to True. If True, the assignment will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.
  • name: A name for the operation (optional).
Returns:

Same as "ref". Returned as a convenience for operations that want to use the new value after the variable has been reset.


tf.assign_add(ref, value, use_locking=None, name=None)

Update 'ref' by adding 'value' to it.

This operation outputs "ref" after the update is done. This makes it easier to chain operations that need to use the reset value.

Args:
  • ref: A mutable Tensor. Must be one of the following types: float32, float64, int64, int32, uint8, uint16, int16, int8, complex64, complex128, qint8, quint8, qint32, half. Should be from a Variable node.
  • value: A Tensor. Must have the same type as ref. The value to be added to the variable.
  • use_locking: An optional bool. Defaults to False. If True, the addition will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.
  • name: A name for the operation (optional).
Returns:

Same as "ref". Returned as a convenience for operations that want to use the new value after the variable has been updated.


tf.assign_sub(ref, value, use_locking=None, name=None)

Update 'ref' by subtracting 'value' from it.

This operation outputs "ref" after the update is done. This makes it easier to chain operations that need to use the reset value.

Args:
  • ref: A mutable Tensor. Must be one of the following types: float32, float64, int64, int32, uint8, uint16, int16, int8, complex64, complex128, qint8, quint8, qint32, half. Should be from a Variable node.
  • value: A Tensor. Must have the same type as ref. The value to be subtracted to the variable.
  • use_locking: An optional bool. Defaults to False. If True, the subtraction will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.
  • name: A name for the operation (optional).
Returns:

Same as "ref". Returned as a convenience for operations that want to use the new value after the variable has been updated.

Saving and Restoring Variables


class tf.train.Saver

Saves and restores variables.

See Variables for an overview of variables, saving and restoring.

The Saver class adds ops to save and restore variables to and from checkpoints. It also provides convenience methods to run these ops.

Checkpoints are binary files in a proprietary format which map variable names to tensor values. The best way to examine the contents of a checkpoint is to load it using a Saver.

Savers can automatically number checkpoint filenames with a provided counter. This lets you keep multiple checkpoints at different steps while training a model. For example you can number the checkpoint filenames with the training step number. To avoid filling up disks, savers manage checkpoint files automatically. For example, they can keep only the N most recent files, or one checkpoint for every N hours of training.

You number checkpoint filenames by passing a value to the optional global_step argument to save():

saver.save(sess, 'my-model', global_step=0) ==> filename: 'my-model-0'
...
saver.save(sess, 'my-model', global_step=1000) ==> filename: 'my-model-1000'

Additionally, optional arguments to the Saver() constructor let you control the proliferation of checkpoint files on disk:

  • max_to_keep indicates the maximum number of recent checkpoint files to keep. As new files are created, older files are deleted. If None or 0, all checkpoint files are kept. Defaults to 5 (that is, the 5 most recent checkpoint files are kept.)

  • keep_checkpoint_every_n_hours: In addition to keeping the most recent max_to_keep checkpoint files, you might want to keep one checkpoint file for every N hours of training. This can be useful if you want to later analyze how a model progressed during a long training session. For example, passing keep_checkpoint_every_n_hours=2 ensures that you keep one checkpoint file for every 2 hours of training. The default value of 10,000 hours effectively disables the feature.

Note that you still have to call the save() method to save the model. Passing these arguments to the constructor will not save variables automatically for you.

A training program that saves regularly looks like:

...
# Create a saver.
saver = tf.train.Saver(...variables...)
# Launch the graph and train, saving the model every 1,000 steps.
sess = tf.Session()
for step in xrange(1000000):
    sess.run(..training_op..)
    if step % 1000 == 0:
        # Append the step number to the checkpoint name:
        saver.save(sess, 'my-model', global_step=step)

In addition to checkpoint files, savers keep a protocol buffer on disk with the list of recent checkpoints. This is used to manage numbered checkpoint files and by latest_checkpoint(), which makes it easy to discover the path to the most recent checkpoint. That protocol buffer is stored in a file named 'checkpoint' next to the checkpoint files.

If you create several savers, you can specify a different filename for the protocol buffer file in the call to save().


tf.train.Saver.__init__(var_list=None, reshape=False, sharded=False, max_to_keep=5, keep_checkpoint_every_n_hours=10000.0, name=None, restore_sequentially=False, saver_def=None, builder=None, defer_build=False, allow_empty=False, write_version=1)

Creates a Saver.

The constructor adds ops to save and restore variables.

var_list specifies the variables that will be saved and restored. It can be passed as a dict or a list:

  • A dict of names to variables: The keys are the names that will be used to save or restore the variables in the checkpoint files.
  • A list of variables: The variables will be keyed with their op name in the checkpoint files.

For example:

v1 = tf.Variable(..., name='v1')
v2 = tf.Variable(..., name='v2')

# Pass the variables as a dict:
saver = tf.train.Saver({'v1': v1, 'v2': v2})

# Or pass them as a list.
saver = tf.train.Saver([v1, v2])
# Passing a list is equivalent to passing a dict with the variable op names
# as keys:
saver = tf.train.Saver({v.op.name: v for v in [v1, v2]})

The optional reshape argument, if True, allows restoring a variable from a save file where the variable had a different shape, but the same number of elements and type. This is useful if you have reshaped a variable and want to reload it from an older checkpoint.

The optional sharded argument, if True, instructs the saver to shard checkpoints per device.

Args:
  • var_list: A list of Variable/SaveableObject, or a dictionary mapping names to SaveableObjects. If None, defaults to the list of all saveable objects.
  • reshape: If True, allows restoring parameters from a checkpoint where the variables have a different shape.
  • sharded: If True, shard the checkpoints, one per device.
  • max_to_keep: Maximum number of recent checkpoints to keep. Defaults to 5.
  • keep_checkpoint_every_n_hours: How often to keep checkpoints. Defaults to 10,000 hours.
  • name: String. Optional name to use as a prefix when adding operations.
  • restore_sequentially: A Bool, which if true, causes restore of different variables to happen sequentially within each device. This can lower memory usage when restoring very large models.
  • saver_def: Optional SaverDef proto to use instead of running the builder. This is only useful for specialty code that wants to recreate a Saver object for a previously built Graph that had a Saver. The saver_def proto should be the one returned by the as_saver_def() call of the Saver that was created for that Graph.
  • builder: Optional SaverBuilder to use if a saver_def was not provided. Defaults to BaseSaverBuilder().
  • defer_build: If True, defer adding the save and restore ops to the build() call. In that case build() should be called before finalizing the graph or using the saver.
  • allow_empty: If False (default) raise an error if there are no variables in the graph. Otherwise, construct the saver anyway and make it a no-op.
  • write_version: controls what format to use when saving checkpoints. It also affects certain filepath matching logic. Defaults to V1 currently, and will be switched to the more memory-efficient V2 format in the future. If set to V2, the Saver is still able to restore from old V1 checkpoints.
Raises:
  • TypeError: If var_list is invalid.
  • ValueError: If any of the keys or values in var_list are not unique.

tf.train.Saver.save(sess, save_path, global_step=None, latest_filename=None, meta_graph_suffix='meta', write_meta_graph=True)

Saves variables.

This method runs the ops added by the constructor for saving variables. It requires a session in which the graph was launched. The variables to save must also have been initialized.

The method returns the path of the newly created checkpoint file. This path can be passed directly to a call to restore().

Args:
  • sess: A Session to use to save the variables.
  • save_path: String. Path to the checkpoint filename. If the saver is sharded, this is the prefix of the sharded checkpoint filename.
  • global_step: If provided the global step number is appended to save_path to create the checkpoint filename. The optional argument can be a Tensor, a Tensor name or an integer.
  • latest_filename: Optional name for the protocol buffer file that will contains the list of most recent checkpoint filenames. That file, kept in the same directory as the checkpoint files, is automatically managed by the saver to keep track of recent checkpoints. Defaults to 'checkpoint'.
  • meta_graph_suffix: Suffix for MetaGraphDef file. Defaults to 'meta'.
  • write_meta_graph: Boolean indicating whether or not to write the meta graph file.
Returns:

A string: path at which the variables were saved. If the saver is sharded, this string ends with: '-?????-of-nnnnn' where 'nnnnn' is the number of shards created. If the saver is empty, returns None.

Raises:
  • TypeError: If sess is not a Session.
  • ValueError: If latest_filename contains path components, or if it collides with save_path.
  • RuntimeError: If save and restore ops weren't built.

tf.train.Saver.restore(sess, save_path)

Restores previously saved variables.

This method runs the ops added by the constructor for restoring variables. It requires a session in which the graph was launched. The variables to restore do not have to have been initialized, as restoring is itself a way to initialize variables.

The save_path argument is typically a value previously returned from a save() call, or a call to latest_checkpoint().

Args:
  • sess: A Session to use to restore the parameters.
  • save_path: Path where parameters were previously saved.
Raises:
  • ValueError: If the given save_path does not point to a file.

Other utility methods.


tf.train.Saver.last_checkpoints

List of not-yet-deleted checkpoint filenames.

You can pass any of the returned values to restore().

Returns:

A list of checkpoint filenames, sorted from oldest to newest.


tf.train.Saver.set_last_checkpoints_with_time(last_checkpoints_with_time)

Sets the list of old checkpoint filenames and timestamps.

Args:
  • last_checkpoints_with_time: A list of tuples of checkpoint filenames and timestamps.
Raises:
  • AssertionError: If last_checkpoints_with_time is not a list.

tf.train.Saver.recover_last_checkpoints(checkpoint_paths)

Recovers the internal saver state after a crash.

This method is useful for recovering the "self._last_checkpoints" state.

Globs for the checkpoints pointed to by checkpoint_paths. If the files exist, use their mtime as the checkpoint timestamp.

Args:
  • checkpoint_paths: a list of checkpoint paths.

tf.train.Saver.as_saver_def()

Generates a SaverDef representation of this saver.

Returns:

A SaverDef proto.

Other Methods


tf.train.Saver.build()

Builds saver_def.


tf.train.Saver.export_meta_graph(filename=None, collection_list=None, as_text=False)

Writes MetaGraphDef to save_path/filename.

Args:
  • filename: Optional meta_graph filename including the path.
  • collection_list: List of string keys to collect.
  • as_text: If True, writes the meta_graph as an ASCII proto.
Returns:

A MetaGraphDef proto.


tf.train.Saver.from_proto(saver_def)

Returns a Saver object created from saver_def.


tf.train.Saver.set_last_checkpoints(last_checkpoints)

DEPRECATED: Use set_last_checkpoints_with_time.

Sets the list of old checkpoint filenames.

Args:
  • last_checkpoints: A list of checkpoint filenames.
Raises:
  • AssertionError: If last_checkpoints is not a list.

tf.train.Saver.to_proto()

Converts this Saver to a SaverDef protocol buffer.

Returns:

A SaverDef protocol buffer.


tf.train.latest_checkpoint(checkpoint_dir, latest_filename=None)

Finds the filename of latest saved checkpoint file.

Args:
  • checkpoint_dir: Directory where the variables were saved.
  • latest_filename: Optional name for the protocol buffer file that contains the list of most recent checkpoint filenames. See the corresponding argument to Saver.save().
Returns:

The full path to the latest checkpoint or None if no checkpoint was found.


tf.train.get_checkpoint_state(checkpoint_dir, latest_filename=None)

Returns CheckpointState proto from the "checkpoint" file.

If the "checkpoint" file contains a valid CheckpointState proto, returns it.

Args:
  • checkpoint_dir: The directory of checkpoints.
  • latest_filename: Optional name of the checkpoint file. Default to 'checkpoint'.
Returns:

A CheckpointState if the state was available, None otherwise.

Raises:
  • ValueError: if the checkpoint read doesn't have model_checkpoint_path set.

tf.train.update_checkpoint_state(save_dir, model_checkpoint_path, all_model_checkpoint_paths=None, latest_filename=None)

Updates the content of the 'checkpoint' file.

This updates the checkpoint file containing a CheckpointState proto.

Args:
  • save_dir: Directory where the model was saved.
  • model_checkpoint_path: The checkpoint file.
  • all_model_checkpoint_paths: List of strings. Paths to all not-yet-deleted checkpoints, sorted from oldest to newest. If this is a non-empty list, the last element must be equal to model_checkpoint_path. These paths are also saved in the CheckpointState proto.
  • latest_filename: Optional name of the checkpoint file. Default to 'checkpoint'.
Raises:
  • RuntimeError: If the save paths conflict.

Sharing Variables

TensorFlow provides several classes and operations that you can use to create variables contingent on certain conditions.


tf.get_variable(name, shape=None, dtype=None, initializer=None, regularizer=None, trainable=True, collections=None, caching_device=None, partitioner=None, validate_shape=True, custom_getter=None)

Gets an existing variable with these parameters or create a new one.

This function prefixes the name with the current variable scope and performs reuse checks. See the Variable Scope How To for an extensive description of how reusing works. Here is a basic example:

with tf.variable_scope("foo"):
    v = tf.get_variable("v", [1])  # v.name == "foo/v:0"
    w = tf.get_variable("w", [1])  # w.name == "foo/w:0"
with tf.variable_scope("foo", reuse=True)
    v1 = tf.get_variable("v")  # The same as v above.

If initializer is None (the default), the default initializer passed in the variable scope will be used. If that one is None too, a uniform_unit_scaling_initializer will be used. The initializer can also be a Tensor, in which case the variable is initialized to this value and shape.

Similarly, if the regularizer is None (the default), the default regularizer passed in the variable scope will be used (if that is None too, then by default no regularization is performed).

If a partitioner is provided, a PartitionedVariable is returned. Accessing this object as a Tensor returns the shards concatenated along the partition axis.

Some useful partitioners are available. See, e.g., variable_axis_size_partitioner and min_max_variable_partitioner.

Args:
  • name: The name of the new or existing variable.
  • shape: Shape of the new or existing variable.
  • dtype: Type of the new or existing variable (defaults to DT_FLOAT).
  • initializer: Initializer for the variable if one is created.
  • regularizer: A (Tensor -> Tensor or None) function; the result of applying it on a newly created variable will be added to the collection GraphKeys.REGULARIZATION_LOSSES and can be used for regularization.
  • trainable: If True also add the variable to the graph collection GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).
  • collections: List of graph collections keys to add the Variable to. Defaults to [GraphKeys.VARIABLES] (see tf.Variable).
  • caching_device: Optional device string or function describing where the Variable should be cached for reading. Defaults to the Variable's device. If not None, caches on another device. Typical use is to cache on the device where the Ops using the Variable reside, to deduplicate copying through Switch and other conditional statements.
  • partitioner: Optional callable that accepts a fully defined TensorShape and dtype of the Variable to be created, and returns a list of partitions for each axis (currently only one axis can be partitioned).
  • validate_shape: If False, allows the variable to be initialized with a value of unknown shape. If True, the default, the shape of initial_value must be known.
  • custom_getter: Callable that takes as a first argument the true getter, and allows overwriting the internal get_variable method. The signature of custom_getter should match that of this method, but the most future-proof version will allow for changes: def custom_getter(getter, *args, **kwargs). Direct access to all get_variable parameters is also allowed: def custom_getter(getter, name, *args, **kwargs). A simple identity custom getter that simply creates variables with modified names is:
     def custom_getter(getter, name, *args, **kwargs):
       return getter(name + '_suffix', *args, **kwargs)
    
Returns:

The created or existing Variable (or PartitionedVariable, if a partitioner was used).

Raises:
  • ValueError: when creating a new variable and shape is not declared, when violating reuse during variable creation, or when initializer dtype and dtype don't match. Reuse is set inside variable_scope.

class tf.VariableScope

Variable scope object to carry defaults to provide to get_variable.

Many of the arguments we need for get_variable in a variable store are most easily handled with a context. This object is used for the defaults.

Attributes: name: name of the current scope, used as prefix in get_variable. initializer: default initializer passed to get_variable. regularizer: default regularizer passed to get_variable. reuse: Boolean or None, setting the reuse in get_variable. caching_device: string, callable, or None: the caching device passed to get_variable. partitioner: callable or None: the partitioner passed to get_variable. custom_getter: default custom getter passed to get_variable. name_scope: The name passed to tf.name_scope. dtype: default type passed to get_variable (defaults to DT_FLOAT).


tf.VariableScope.__init__(reuse, name='', initializer=None, regularizer=None, caching_device=None, partitioner=None, custom_getter=None, name_scope='', dtype=tf.float32)

Creates a new VariableScope with the given properties.


tf.VariableScope.caching_device


tf.VariableScope.custom_getter


tf.VariableScope.dtype


tf.VariableScope.get_variable(var_store, name, shape=None, dtype=None, initializer=None, regularizer=None, trainable=True, collections=None, caching_device=None, partitioner=None, validate_shape=True, custom_getter=None)

Gets an existing variable with this name or create a new one.


tf.VariableScope.initializer


tf.VariableScope.name


tf.VariableScope.original_name_scope


tf.VariableScope.partitioner


tf.VariableScope.regularizer


tf.VariableScope.reuse


tf.VariableScope.reuse_variables()

Reuse variables in this scope.


tf.VariableScope.set_caching_device(caching_device)

Set caching_device for this scope.


tf.VariableScope.set_custom_getter(custom_getter)

Set custom getter for this scope.


tf.VariableScope.set_dtype(dtype)

Set data type for this scope.


tf.VariableScope.set_initializer(initializer)

Set initializer for this scope.


tf.VariableScope.set_partitioner(partitioner)

Set partitioner for this scope.


tf.VariableScope.set_regularizer(regularizer)

Set regularizer for this scope.


tf.variable_scope(name_or_scope, default_name=None, values=None, initializer=None, regularizer=None, caching_device=None, partitioner=None, custom_getter=None, reuse=None, dtype=None)

Returns a context manager for defining ops that creates variables (layers).

This context manager validates that the (optional) values are from the same graph, ensures that graph is the default graph, and pushes a name scope and a variable scope.

If name_or_scope is not None, it is used as is. If scope is None, then default_name is used. In that case, if the same name has been previously used in the same scope, it will made unique be appending _N to it.

Variable scope allows to create new variables and to share already created ones while providing checks to not create or share by accident. For details, see the Variable Scope How To, here we present only a few basic examples.

Simple example of how to create a new variable:

with tf.variable_scope("foo"):
    with tf.variable_scope("bar"):
        v = tf.get_variable("v", [1])
        assert v.name == "foo/bar/v:0"

Basic example of sharing a variable:

with tf.variable_scope("foo"):
    v = tf.get_variable("v", [1])
with tf.variable_scope("foo", reuse=True):
    v1 = tf.get_variable("v", [1])
assert v1 == v

Sharing a variable by capturing a scope and setting reuse:

with tf.variable_scope("foo") as scope:
    v = tf.get_variable("v", [1])
    scope.reuse_variables()
    v1 = tf.get_variable("v", [1])
assert v1 == v

To prevent accidental sharing of variables, we raise an exception when getting an existing variable in a non-reusing scope.

with tf.variable_scope("foo"):
    v = tf.get_variable("v", [1])
    v1 = tf.get_variable("v", [1])
    #  Raises ValueError("... v already exists ...").

Similarly, we raise an exception when trying to get a variable that does not exist in reuse mode.

with tf.variable_scope("foo", reuse=True):
    v = tf.get_variable("v", [1])
    #  Raises ValueError("... v does not exists ...").

Note that the reuse flag is inherited: if we open a reusing scope, then all its sub-scopes become reusing as well.

Args:
  • name_or_scope: string or VariableScope: the scope to open.
  • default_name: The default name to use if the name_or_scope argument is None, this name will be uniquified. If name_or_scope is provided it won't be used and therefore it is not required and can be None.
  • values: The list of Tensor arguments that are passed to the op function.
  • initializer: default initializer for variables within this scope.
  • regularizer: default regularizer for variables within this scope.
  • caching_device: default caching device for variables within this scope.
  • partitioner: default partitioner for variables within this scope.
  • custom_getter: default custom getter for variables within this scope.
  • reuse: True or None; if True, we go into reuse mode for this scope as well as all sub-scopes; if None, we just inherit the parent scope reuse.
  • dtype: type of variables created in this scope (defaults to the type in the passed scope, or inherited from parent scope).
Returns:

A scope that can be to captured and reused.

Raises:
  • ValueError: when trying to reuse within a create scope, or create within a reuse scope, or if reuse is not None or True.
  • TypeError: when the types of some arguments are not appropriate.

tf.variable_op_scope(values, name_or_scope, default_name=None, initializer=None, regularizer=None, caching_device=None, partitioner=None, custom_getter=None, reuse=None, dtype=None)

Deprecated: context manager for defining an op that creates variables.


tf.get_variable_scope()

Returns the current variable scope.


tf.make_template(name_, func_, create_scope_now_=False, unique_name_=None, **kwargs)

Given an arbitrary function, wrap it so that it does variable sharing.

This wraps func_ in a Template and partially evaluates it. Templates are functions that create variables the first time they are called and reuse them thereafter. In order for func_ to be compatible with a Template it must have the following properties:

  • The function should create all trainable variables and any variables that should be reused by calling tf.get_variable. If a trainable variable is created using tf.Variable, then a ValueError will be thrown. Variables that are intended to be locals can be created by specifying tf.Variable(..., trainable=false).
  • The function may use variable scopes and other templates internally to create and reuse variables, but it shouldn't use tf.all_variables to capture variables that are defined outside of the scope of the function.
  • Internal scopes and variable names should not depend on any arguments that are not supplied to make_template. In general you will get a ValueError telling you that you are trying to reuse a variable that doesn't exist if you make a mistake.

In the following example, both z and w will be scaled by the same y. It is important to note that if we didn't assign scalar_name and used a different name for z and w that a ValueError would be thrown because it couldn't reuse the variable.

def my_op(x, scalar_name):
  var1 = tf.get_variable(scalar_name,
                         shape=[],
                         initializer=tf.constant_initializer(1))
  return x * var1

scale_by_y = tf.make_template('scale_by_y', my_op, scalar_name='y')

z = scale_by_y(input1)
w = scale_by_y(input2)

As a safe-guard, the returned function will raise a ValueError after the first call if trainable variables are created by calling tf.Variable.

If all of these are true, then 2 properties are enforced by the template:

  1. Calling the same template multiple times will share all non-local variables.
  2. Two different templates are guaranteed to be unique, unless you reenter the same variable scope as the initial definition of a template and redefine it. An examples of this exception:
def my_op(x, scalar_name):
  var1 = tf.get_variable(scalar_name,
                         shape=[],
                         initializer=tf.constant_initializer(1))
  return x * var1

with tf.variable_scope('scope') as vs:
  scale_by_y = tf.make_template('scale_by_y', my_op, scalar_name='y')
  z = scale_by_y(input1)
  w = scale_by_y(input2)

# Creates a template that reuses the variables above.
with tf.variable_scope(vs, reuse=True):
  scale_by_y2 = tf.make_template('scale_by_y', my_op, scalar_name='y')
  z2 = scale_by_y2(input1)
  w2 = scale_by_y2(input2)

Depending on the value of create_scope_now_, the full variable scope may be captured either at the time of first call or at the time of construction. If this option is set to True, then all Tensors created by repeated calls to the template will have an extra trailing _N+1 to their name, as the first time the scope is entered in the Template constructor no Tensors are created.

Note: name_, func_ and create_scope_now_ have a trailing underscore to reduce the likelihood of collisions with kwargs.

Args:
  • name_: A name for the scope created by this template. If necessary, the name will be made unique by appending _N to the name.
  • func_: The function to wrap.
  • create_scope_now_: Boolean controlling whether the scope should be created when the template is constructed or when the template is called. Default is False, meaning the scope is created when the template is called.
  • unique_name_: When used, it overrides name_ and is not made unique. If a template of the same scope/unique_name already exists and reuse is false, an error is raised. Defaults to None.
  • **kwargs: Keyword arguments to apply to func_.
Returns:

A function to encapsulate a set of variables which should be created once and reused. An enclosing scope will created, either where make_template is called, or wherever the result is called, depending on the value of create_scope_now_. Regardless of the value, the first time the template is called it will enter the scope with no reuse, and call func_ to create variables, which are guaranteed to be unique. All subsequent calls will re-enter the scope and reuse those variables.

Raises:
  • ValueError: if the name is None.

tf.no_regularizer(_)

Use this function to prevent regularization of variables.


tf.constant_initializer(value=0, dtype=tf.float32)

Returns an initializer that generates tensors with constant values.

The resulting tensor is populated with values of type dtype, as specified by arguments value following the desired shape of the new tensor (see examples below).

The argument value can be a constant value, or a list of values of type dtype. If value is a list, then the length of the list must be less than or equal to the number of elements implied by the desired shape of the tensor. In the case where the total number of elements in value is less than the number of elements required by the tensor shape, the last element in value will be used to fill the remaining entries. If the total number of elements in value is greater than the number of elements required by the tensor shape, the initializer will raise a ValueError.

Args:
  • value: A Python scalar, list of values, or a N-dimensional numpy array. All elements of the initialized variable will be set to the corresponding value in the value argument.
  • dtype: The data type.
Returns:

An initializer that generates tensors with constant values.

Examples:

The following example can be rewritten using a numpy.ndarray instead of the value list, even reshaped, as shown in the two commented lines below the value list initialization.

  >>> import numpy as np
  >>> import tensorflow as tf

  >>> value = [0, 1, 2, 3, 4, 5, 6, 7]
  >>> # value = np.array(value)
  >>> # value = value.reshape([2, 4])
  >>> init = tf.constant_initializer(value)

  >>> print('fitting shape:')
  >>> tf.reset_default_graph()
  >>> with tf.Session():
  >>>   x = tf.get_variable('x', shape=[2, 4], initializer=init)
  >>>   x.initializer.run()
  >>>   print(x.eval())

  fitting shape:
  [[ 0.  1.  2.  3.]
   [ 4.  5.  6.  7.]]

  >>> print('larger shape:')
  >>> tf.reset_default_graph()
  >>> with tf.Session():
  >>>   x = tf.get_variable('x', shape=[3, 4], initializer=init)
  >>>   x.initializer.run()
  >>>   print(x.eval())

  larger shape:
  [[ 0.  1.  2.  3.]
   [ 4.  5.  6.  7.]
   [ 7.  7.  7.  7.]]

  >>> print('smaller shape:')
  >>> tf.reset_default_graph()
  >>> with tf.Session():
  >>>   x = tf.get_variable('x', shape=[2, 3], initializer=init)


*  <b>`ValueError`</b>: Too many elements provided. Needed at most 6, but received 8

tf.random_normal_initializer(mean=0.0, stddev=1.0, seed=None, dtype=tf.float32)

Returns an initializer that generates tensors with a normal distribution.

Args:
  • mean: a python scalar or a scalar tensor. Mean of the random values to generate.
  • stddev: a python scalar or a scalar tensor. Standard deviation of the random values to generate.
  • seed: A Python integer. Used to create random seeds. See set_random_seed for behavior.
  • dtype: The data type. Only floating point types are supported.
Returns:

An initializer that generates tensors with a normal distribution.

Raises:
  • ValueError: if dtype is not a floating point type.

tf.truncated_normal_initializer(mean=0.0, stddev=1.0, seed=None, dtype=tf.float32)

Returns an initializer that generates a truncated normal distribution.

These values are similar to values from a random_normal_initializer except that values more than two standard deviations from the mean are discarded and re-drawn. This is the recommended initializer for neural network weights and filters.

Args:
  • mean: a python scalar or a scalar tensor. Mean of the random values to generate.
  • stddev: a python scalar or a scalar tensor. Standard deviation of the random values to generate.
  • seed: A Python integer. Used to create random seeds. See set_random_seed for behavior.
  • dtype: The data type. Only floating point types are supported.
Returns:

An initializer that generates tensors with a truncated normal distribution.

Raises:
  • ValueError: if dtype is not a floating point type.

tf.random_uniform_initializer(minval=0, maxval=None, seed=None, dtype=tf.float32)

Returns an initializer that generates tensors with a uniform distribution.

Args:
  • minval: A python scalar or a scalar tensor. Lower bound of the range of random values to generate.
  • maxval: A python scalar or a scalar tensor. Upper bound of the range of random values to generate. Defaults to 1 for float types.
  • seed: A Python integer. Used to create random seeds. See set_random_seed for behavior.
  • dtype: The data type.
Returns:

An initializer that generates tensors with a uniform distribution.


tf.uniform_unit_scaling_initializer(factor=1.0, seed=None, dtype=tf.float32)

Returns an initializer that generates tensors without scaling variance.

When initializing a deep network, it is in principle advantageous to keep the scale of the input variance constant, so it does not explode or diminish by reaching the final layer. If the input is x and the operation x * W, and we want to initialize W uniformly at random, we need to pick W from

[-sqrt(3) / sqrt(dim), sqrt(3) / sqrt(dim)]

to keep the scale intact, where dim = W.shape[0] (the size of the input). A similar calculation for convolutional networks gives an analogous result with dim equal to the product of the first 3 dimensions. When nonlinearities are present, we need to multiply this by a constant factor. See Sussillo et al., 2014 (pdf) for deeper motivation, experiments and the calculation of constants. In section 2.3 there, the constants were numerically computed: for a linear layer it's 1.0, relu: ~1.43, tanh: ~1.15.

Args:
  • factor: Float. A multiplicative factor by which the values will be scaled.
  • seed: A Python integer. Used to create random seeds. See set_random_seed for behavior.
  • dtype: The data type. Only floating point types are supported.
Returns:

An initializer that generates tensors with unit variance.

Raises:
  • ValueError: if dtype is not a floating point type.

tf.zeros_initializer(shape, dtype=tf.float32, partition_info=None)

An adaptor for zeros() to match the Initializer spec.


tf.ones_initializer(shape, dtype=tf.float32, partition_info=None)

An adaptor for ones() to match the Initializer spec.

Variable Partitioners for Sharding


tf.fixed_size_partitioner(num_shards, axis=0)

Partitioner to specify a fixed number of shards along given axis.

Args:
  • num_shards: int, number of shards to partition variable.
  • axis: int, axis to partition on.
Returns:

A partition function usable as the partitioner argument to variable_scope, get_variable, and get_partitioned_variable_list.


tf.variable_axis_size_partitioner(max_shard_bytes, axis=0, bytes_per_string_element=16, max_shards=None)

Get a partitioner for VariableScope to keep shards below max_shard_bytes.

This partitioner will shard a Variable along one axis, attempting to keep the maximum shard size below max_shard_bytes. In practice, this is not always possible when sharding along only one axis. When this happens, this axis is sharded as much as possible (i.e., every dimension becomes a separate shard).

If the partitioner hits the max_shards limit, then each shard may end up larger than max_shard_bytes. By default max_shards equals None and no limit on the number of shards is enforced.

One reasonable value for max_shard_bytes is (64 << 20) - 1, or almost 64MB, to keep below the protobuf byte limit.

Args:
  • max_shard_bytes: The maximum size any given shard is allowed to be.
  • axis: The axis to partition along. Default: outermost axis.
  • bytes_per_string_element: If the Variable is of type string, this provides an estimate of how large each scalar in the Variable is.
  • max_shards: The maximum number of shards in int created taking precedence over max_shard_bytes.
Returns:

A partition function usable as the partitioner argument to variable_scope, get_variable, and get_partitioned_variable_list.

Raises:
  • ValueError: If any of the byte counts are non-positive.

tf.min_max_variable_partitioner(max_partitions=1, axis=0, min_slice_size=262144, bytes_per_string_element=16)

Partitioner to allocate minimum size per slice.

Returns a partitioner that partitions the variable of given shape and dtype such that each partition has a minimum of min_slice_size slice of the variable. The maximum number of such partitions (upper bound) is given by max_partitions.

Args:
  • max_partitions: Upper bound on the number of partitions. Defaults to 1.
  • axis: Axis along which to partition the variable. Defaults to 0.
  • min_slice_size: Minimum size of the variable slice per partition. Defaults to 256K.
  • bytes_per_string_element: If the Variable is of type string, this provides an estimate of how large each scalar in the Variable is.
Returns:

A partition function usable as the partitioner argument to variable_scope, get_variable, and get_partitioned_variable_list.

Sparse Variable Updates

The sparse update ops modify a subset of the entries in a dense Variable, either overwriting the entries or adding / subtracting a delta. These are useful for training embedding models and similar lookup-based networks, since only a small subset of embedding vectors change in any given step.

Since a sparse update of a large tensor may be generated automatically during gradient computation (as in the gradient of tf.gather), an IndexedSlices class is provided that encapsulates a set of sparse indices and values. IndexedSlices objects are detected and handled automatically by the optimizers in most cases.


tf.scatter_update(ref, indices, updates, use_locking=None, name=None)

Applies sparse updates to a variable reference.

This operation computes

# Scalar indices
ref[indices, ...] = updates[...]

# Vector indices (for each i)
ref[indices[i], ...] = updates[i, ...]

# High rank indices (for each i, ..., j)
ref[indices[i, ..., j], ...] = updates[i, ..., j, ...]

This operation outputs ref after the update is done. This makes it easier to chain operations that need to use the reset value.

If values in ref is to be updated more than once, because there are duplicate entires in indices, the order at which the updates happen for each value is undefined.

Requires updates.shape = indices.shape + ref.shape[1:].

Args:
  • ref: A mutable Tensor. Should be from a Variable node.
  • indices: A Tensor. Must be one of the following types: int32, int64. A tensor of indices into the first dimension of ref.
  • updates: A Tensor. Must have the same type as ref. A tensor of updated values to store in ref.
  • use_locking: An optional bool. Defaults to True. If True, the assignment will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.
  • name: A name for the operation (optional).
Returns:

Same as ref. Returned as a convenience for operations that want to use the updated values after the update is done.


tf.scatter_add(ref, indices, updates, use_locking=None, name=None)

Adds sparse updates to a variable reference.

This operation computes

# Scalar indices
ref[indices, ...] += updates[...]

# Vector indices (for each i)
ref[indices[i], ...] += updates[i, ...]

# High rank indices (for each i, ..., j)
ref[indices[i, ..., j], ...] += updates[i, ..., j, ...]

This operation outputs ref after the update is done. This makes it easier to chain operations that need to use the reset value.

Duplicate entries are handled correctly: if multiple indices reference the same location, their contributions add.

Requires updates.shape = indices.shape + ref.shape[1:].

Args:
  • ref: A mutable Tensor. Must be one of the following types: float32, float64, int64, int32, uint8, uint16, int16, int8, complex64, complex128, qint8, quint8, qint32, half. Should be from a Variable node.
  • indices: A Tensor. Must be one of the following types: int32, int64. A tensor of indices into the first dimension of ref.
  • updates: A Tensor. Must have the same type as ref. A tensor of updated values to add to ref.
  • use_locking: An optional bool. Defaults to False. If True, the addition will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.
  • name: A name for the operation (optional).
Returns:

Same as ref. Returned as a convenience for operations that want to use the updated values after the update is done.


tf.scatter_sub(ref, indices, updates, use_locking=None, name=None)

Subtracts sparse updates to a variable reference.

# Scalar indices
ref[indices, ...] -= updates[...]

# Vector indices (for each i)
ref[indices[i], ...] -= updates[i, ...]

# High rank indices (for each i, ..., j)
ref[indices[i, ..., j], ...] -= updates[i, ..., j, ...]

This operation outputs ref after the update is done. This makes it easier to chain operations that need to use the reset value.

Duplicate entries are handled correctly: if multiple indices reference the same location, their (negated) contributions add.

Requires updates.shape = indices.shape + ref.shape[1:].

Args:
  • ref: A mutable Tensor. Must be one of the following types: float32, float64, int64, int32, uint8, uint16, int16, int8, complex64, complex128, qint8, quint8, qint32, half. Should be from a Variable node.
  • indices: A Tensor. Must be one of the following types: int32, int64. A tensor of indices into the first dimension of ref.
  • updates: A Tensor. Must have the same type as ref. A tensor of updated values to subtract from ref.
  • use_locking: An optional bool. Defaults to False. If True, the subtraction will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.
  • name: A name for the operation (optional).
Returns:

Same as ref. Returned as a convenience for operations that want to use the updated values after the update is done.


tf.scatter_mul(ref, indices, updates, use_locking=None, name=None)

Multiplies sparse updates into a variable reference.

This operation computes

# Scalar indices
ref[indices, ...] *= updates[...]

# Vector indices (for each i)
ref[indices[i], ...] *= updates[i, ...]

# High rank indices (for each i, ..., j)
ref[indices[i, ..., j], ...] *= updates[i, ..., j, ...]

This operation outputs ref after the update is done. This makes it easier to chain operations that need to use the reset value.

Duplicate entries are handled correctly: if multiple indices reference the same location, their contributions multiply.

Requires updates.shape = indices.shape + ref.shape[1:].

Args:
  • ref: A mutable Tensor. Must be one of the following types: float32, float64, int64, int32, uint8, uint16, int16, int8, complex64, complex128, qint8, quint8, qint32, half. Should be from a Variable node.
  • indices: A Tensor. Must be one of the following types: int32, int64. A tensor of indices into the first dimension of ref.
  • updates: A Tensor. Must have the same type as ref. A tensor of updated values to multiply to ref.
  • use_locking: An optional bool. Defaults to False. If True, the operation will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.
  • name: A name for the operation (optional).
Returns:

Same as ref. Returned as a convenience for operations that want to use the updated values after the update is done.


tf.scatter_div(ref, indices, updates, use_locking=None, name=None)

Divides a variable reference by sparse updates.

This operation computes

# Scalar indices
ref[indices, ...] /= updates[...]

# Vector indices (for each i)
ref[indices[i], ...] /= updates[i, ...]

# High rank indices (for each i, ..., j)
ref[indices[i, ..., j], ...] /= updates[i, ..., j, ...]

This operation outputs ref after the update is done. This makes it easier to chain operations that need to use the reset value.

Duplicate entries are handled correctly: if multiple indices reference the same location, their contributions divide.

Requires updates.shape = indices.shape + ref.shape[1:].

Args:
  • ref: A mutable Tensor. Must be one of the following types: float32, float64, int64, int32, uint8, uint16, int16, int8, complex64, complex128, qint8, quint8, qint32, half. Should be from a Variable node.
  • indices: A Tensor. Must be one of the following types: int32, int64. A tensor of indices into the first dimension of ref.
  • updates: A Tensor. Must have the same type as ref. A tensor of values that ref is divided by.
  • use_locking: An optional bool. Defaults to False. If True, the operation will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.
  • name: A name for the operation (optional).
Returns:

Same as ref. Returned as a convenience for operations that want to use the updated values after the update is done.


tf.sparse_mask(a, mask_indices, name=None)

Masks elements of IndexedSlices.

Given an IndexedSlices instance a, returns another IndexedSlices that contains a subset of the slices of a. Only the slices at indices not specified in mask_indices are returned.

This is useful when you need to extract a subset of slices in an IndexedSlices object.

For example:

# `a` contains slices at indices [12, 26, 37, 45] from a large tensor
# with shape [1000, 10]
a.indices => [12, 26, 37, 45]
tf.shape(a.values) => [4, 10]

# `b` will be the subset of `a` slices at its second and third indices, so
# we want to mask its first and last indices (which are at absolute
# indices 12, 45)
b = tf.sparse_mask(a, [12, 45])

b.indices => [26, 37]
tf.shape(b.values) => [2, 10]
Args:
  • a: An IndexedSlices instance.
  • mask_indices: Indices of elements to mask.
  • name: A name for the operation (optional).
Returns:

The masked IndexedSlices instance.


class tf.IndexedSlices

A sparse representation of a set of tensor slices at given indices.

This class is a simple wrapper for a pair of Tensor objects:

  • values: A Tensor of any dtype with shape [D0, D1, ..., Dn].
  • indices: A 1-D integer Tensor with shape [D0].

An IndexedSlices is typically used to represent a subset of a larger tensor dense of shape [LARGE0, D1, .. , DN] where LARGE0 >> D0. The values in indices are the indices in the first dimension of the slices that have been extracted from the larger tensor.

The dense tensor dense represented by an IndexedSlices slices has

dense[slices.indices[i], :, :, :, ...] = slices.values[i, :, :, :, ...]

The IndexedSlices class is used principally in the definition of gradients for operations that have sparse gradients (e.g. tf.gather).

Contrast this representation with SparseTensor, which uses multi-dimensional indices and scalar values.


tf.IndexedSlices.__init__(values, indices, dense_shape=None)

Creates an IndexedSlices.


tf.IndexedSlices.values

A Tensor containing the values of the slices.


tf.IndexedSlices.indices

A 1-D Tensor containing the indices of the slices.


tf.IndexedSlices.dense_shape

A 1-D Tensor containing the shape of the corresponding dense tensor.


tf.IndexedSlices.name

The name of this IndexedSlices.


tf.IndexedSlices.dtype

The DType of elements in this tensor.


tf.IndexedSlices.device

The name of the device on which values will be produced, or None.


tf.IndexedSlices.op

The Operation that produces values as an output.

Other Methods


tf.IndexedSlices.__neg__()


tf.IndexedSlices.__str__()


tf.IndexedSlices.graph

The Graph that contains the values, indices, and shape tensors.

Read-only Lookup Tables


tf.initialize_all_tables(name='init_all_tables')

Returns an Op that initializes all tables of the default graph.

Args:
  • name: Optional name for the initialization op.
Returns:

An Op that initializes all tables. Note that if there are not tables the returned Op is a NoOp.

Exporting and Importing Meta Graphs


tf.train.export_meta_graph(filename=None, meta_info_def=None, graph_def=None, saver_def=None, collection_list=None, as_text=False)

Returns MetaGraphDef proto. Optionally writes it to filename.

This function exports the graph, saver, and collection objects into MetaGraphDef protocol buffer with the intention of it being imported at a later time or location to restart training, run inference, or be a subgraph.

Args:
  • filename: Optional filename including the path for writing the generated MetaGraphDef protocol buffer.
  • meta_info_def: MetaInfoDef protocol buffer.
  • graph_def: GraphDef protocol buffer.
  • saver_def: SaverDef protocol buffer.
  • collection_list: List of string keys to collect.
  • as_text: If True, writes the MetaGraphDef as an ASCII proto.
Returns:

A MetaGraphDef proto.


tf.train.import_meta_graph(meta_graph_or_file, clear_devices=False)

Recreates a Graph saved in a MetaGraphDef proto.

This function takes a MetaGraphDef protocol buffer as input. If the argument is a file containing a MetaGraphDef protocol buffer , it constructs a protocol buffer from the file content. The function then adds all the nodes from the graph_def field to the current graph, recreates all the collections, and returns a saver constructed from the saver_def field.

In combination with export_meta_graph(), this function can be used to

  • Serialize a graph along with other Python objects such as QueueRunner, Variable into a MetaGraphDef.

  • Restart training from a saved graph and checkpoints.

  • Run inference from a saved graph and checkpoints.

...
# Create a saver.
saver = tf.train.Saver(...variables...)
# Remember the training_op we want to run by adding it to a collection.
tf.add_to_collection('train_op', train_op)
sess = tf.Session()
for step in xrange(1000000):
    sess.run(train_op)
    if step % 1000 == 0:
        # Saves checkpoint, which by default also exports a meta_graph
        # named 'my-model-global_step.meta'.
        saver.save(sess, 'my-model', global_step=step)

Later we can continue training from this saved meta_graph without building the model from scratch.

with tf.Session() as sess:
  new_saver = tf.train.import_meta_graph('my-save-dir/my-model-10000.meta')
  new_saver.restore(sess, 'my-save-dir/my-model-10000')
  # tf.get_collection() returns a list. In this example we only want the
  # first one.
  train_op = tf.get_collection('train_op')[0]
  for step in xrange(1000000):
    sess.run(train_op)

NOTE: Restarting training from saved meta_graph only works if the device assignments have not changed.

Args:
  • meta_graph_or_file: MetaGraphDef protocol buffer or filename (including the path) containing a MetaGraphDef.
  • clear_devices: Boolean which controls whether to clear device information from graph_def. Default false.
Returns:

A saver constructed from saver_def in MetaGraphDef or None.

A None value is returned if no variables exist in the MetaGraphDef (i.e., there are no variables to restore).

results matching ""

    No results matching ""